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INSTRUCTIONS 

 

1. This examination paper contains FIVE questions.  

2. Answer any THREE questions. 

 

 



QUESTION ONE (20 marks) 
a) Show that every Borel subset of  is Lebesgue-measurable (6 marks) 

b) Show that if nE is a Lebesque-measurable subset of  for each n, then U{ :nE n } is also 

Lebesque-measurable (10 marks) 
c) Using cardinality arguments and the cantor set P of  show that the Borel algebra () is a proper subset 

of M (the class of all lebesgue-measurable subsets of ) 
(Quote results you use without proofs) (4 marks) 

 

QUESTION TWO (20 marks) 

a) Let  ,X S be a measurable space and the function , :f g X R be S-measurable. Quoting all the 

results you use (without proving them) give an outline of the solution to prove that the product .f g is S-

measurable. (6 marks) 

b) Let  ,X S be a measurable space and :f X C be a function. Show that  1f x S  for each Borel 

set B of  if and only if the real-valued functions 1 Ref   f and 2 Imf   f are S-measurable.     

(8 marks) 

c) Let  ,X S be a measurable space and :f X R is a S-measurable non-negative function. Show that 

there is a monotonic increasing  S of a non-negative S-measurable real-valued simple functions 

converging to f on X (6 marks) 

 

QUESTION THREE (20 marks) 
a) State and prove Monotone Convergence theorem (13 marks) 

b) Let  ,X S  be a measure space and f be S-measurable on X and non-negative. Show that 0fd   

with equality holding if and only if 0f  .ae  (7 marks) 

 

QUESTION FOUR (20 marks) 
a)  , ,X S  is an incomplete measure space. Show that we can always obtain a complete measure space 

 0 0, ,X S  where 0S S and    0 E E  for all E S . (14 marks) 

b) Let  , ,X S  be an incomplete measure space and ,f g be functions on X into 
R such that 

f g .ae   Let f be S-measurable and let ( )g x a constant c for all 

 :x E x X      .f x g x  Show that g is S-measurable. (8 marks) 

 

QUESTION FIVE (20 marks)  
a) Let  , ,X S  be a measure space and ,f g be extended real value functions on X such that 

f g ae  and such that f and g are both S-measurable. If f is integrable show that g is integrable 

and that Fd gd   . (10 marks) 

b) State and prove the Dominated convergence theorem for a sequence of complex-valued measurable 

functions. (10 marks) 
 

 
 

 


