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INSTRUCTIONS 

 

1. This examination paper contains FIVE questions.  

2. Answer any THREE questions. 

 



 

 

QUESTION ONE (20 marks) 
a) Let  ,x y be a topological space. Show that E is nowhere dense if and only if X E is dense in X . 

(Derive any result that you may use in your solution) (7 marks) 

b) Let  ,x y be a topological space. If A is the intersection of all the closed subsets of X that contain a 

subset E of X , show that every point of A is a point of adherence of E . (8 marks) 

c) If  is an index set of infinite cardinality and  :E   is a family of subsets of a topological space 

 ,x y , show that 

                           U E U E
  

                                                      

But that the set equality need not in    (5 marks) 

 

QUESTION TWO (20 marks) 

a) Quote a set of necessary and sufficient conditions for a family of subsets of a nonvoid set X to be 

a base for a topology in X and prove your statement. (8 marks) 
b) Show that any nonvoid collection Ƣ of subsets of a nonvoid set X can serve as a subbasis for a topology in 

X and show that this topology is the intersection of all the topologies on X that contain Ƣ. (7 marks) 

c) Consider R and let  1 , : ,B a b a b R and  ,a b 2 , : ,B a b a b  R and a b be a family of 

all subintervals of R as indicated. If 1y and 2y are the topologies generated by 1B , 2B respectively, show 

that 2y is strictly finer than 1y  (5 marks) 

 

QUESTION THREE (20 marks) 
a) Let X be a nonvoid set and    :k P x P x an operator which satisfies the following properties: 

(i)  k       (ii)   k E E  for all  .E P X  (iii)       k A B k A k B   for all 

 ,A B P X  (iv)     k k E k E for all  E P X  

Let  be the family     :F P X k F F  and  :cy F F  . Show that y is a topology on 

X and that if E is the closure of E with respect to this topology, then  k E E for all  E P X      

(10 marks) 

b)  ,x y ,  ,Y u are topological spaces. Show that the following statements are equivalent: 

i. 1f 
 is closed with respect to  ,x y for each subset F of Y which is closed with respect to u . 

ii.    f A f A for all  A P x  

iii.    1 1f B f B  for all  B P y  (10 marks) 

 

QUESTION FOUR (20 marks) 
a) Show by means of an example that if a function is sequentially continuous at a point in a 

topological space, it need not to be continuous there at (8 marks) 

b) If  ,x y is a first countable topological space and  ,Y u is any topological space and :f X Y is a 

function, show that sequential continuity of f at a point p X does imply that f is continuous at 

p with respect to y andu . (7 marks) 

c) Show that the cofinite topology on the real line R is not first countable (5 marks) 



 

QUESTION FIVE (20 marks)  
a) State Urysohn’s lemma for a normal space. (2 marks) 

b) If  ,x y is a second countable space, prove 

i. every open cover of any subset A of X is reducible to a countable cover  (7 marks) 

ii. every base Y  for y  is reducible to a countable base.(6 marks) 

c) Show that a topological space   ,x y is normal if and only if for every closed set F and any open set 

H containing F there exists an open set G such that 

                                        F G G H         (5 marks) 

 
 

 

 


