

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BUSINESS AND ECONOMICS

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF BUSINESS ADMINISTRATION WITH IT

2^{ND} YEAR 1^{ST} SEMESTER 2019/2020 ACADEMIC YEAR MAIN-EVENING

COURSE CODE: ABA 206

COURSE TITLE: Business Statistics

EXAM VENUE: STREAM: (BBA)

DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

- 1. Answer ALL questions in section A and ANY other 2 questions in section B
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

mai	were rejected						(5mks
Num	ber of rejects	0-4	5-9	10-19	20-29	30-49	
Num	nber of runs	12	28	9	7	2	
For e	each class, write	down t	he				
i)	Lower and upper class limits						
ii)	Lower and upper boundaries						
iii)	Class width						
iv)	Mid-point	Mid-point					
							(5mks
e) D	iscuss any five r	nethods	of prin	nary data col	lection		(10mks
2. a) i)	State the main	aim of I	Lorenz	curve			(2mks)
•••	In the graph pa	aper pro	vided c	construct a L	orenz curve fro	m the informa	tion given
11)	Below which	gives th	e value	s or properti	es handled by a	dealer over a	six months
11)	Period.						(8mks)
11)	i ciioa.						

	value of pro	perty				Num	ber of	proper	ties	
	(£ 000)									
	10 and less th	han 15					2			
	15 and less th	han 20					6			
	20 and less than 25						14			
	25 and less than 30						21			
	30 and less than 35									
	35 and less than 40 19									
	40 and less than 45 5									
	Total						100			
	b) i). Draw a histogram to represent the sales of men's shoes in a department store over									
	a parti	cular p	eriod.							(6 mks)
	Size	5	6	7	8	9	10	11	12	
	Sales	3	6	17	20	28	14	8	4	
	ii) State four advantages of arithmetic mean (4mks)									
3.	In a test to o	letermi	ne the	working	life of	type of	f electri	c light	bulb, one	hundred bulbs
	were selecte	d at ra	ndom 1	from a j	product	ion and	simult	aneous	ly connec	ted to a power
	source. The f	followi	ng data	show th	e numb	er (of tl	he origi	nal one	hundred)	still working at
	the end of su	ccessiv	e perio	ds of 10	0 hours	, all bul	bs havii	ng faile	d within 1	000 hrs.

Elapsed time (hrs) Number working

Graph these data using a cumulative frequency polygon and use it to estimate

a) The percentage of bulbs that lasted more than 750 hrs

(12 mks)

b) The percentage of bulbs that did not last 350 hrs

(4mks)

- c) The minimum guaranteed life of a bulb that the company could quote in order that only 5% of customers would have cause for complaint. (4mks)
- 4. a) Complete the index number for 1996 from the following data by using weighted average of price relative method. (10mks)

Item	Price	Price	Quantities
	1991	1996	units
	shs	shs	
meat	25	50	100
fish	20	40	30
eggs	20	30	50
vegetable	10	18	100
fruit	30	45	50

- b. explain any five shortcomings of consumer price index number(10mks)
- 5. a) Calculate arithmetic mean, median and mode from the data given below

Daily wages	No. of workers
Sh.	Sh.
30-35	5
35-40	8
40-45	10
45-50	6
50-55	3
55-60	2

b) In a post office, three clerks are assigned to process incoming mail. The first clerk B_1 Processes 40 percent, the second Clerk B_2 Processes 35 percent and the third clerk B_3 , Processes 25 percent of the mail.

The first clerk has an error rate of 0.04, the second has an error rate of 0.06 and the third has an error rate of 0.03. A mail selected at random from a day's output is found to have an error. The post master wishes to know the probability that the mail was processed by the first, second or third clerk respectively. (10mks)