JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE
 SPECIAL RESIST 2020/2021 ACADEMIC YEAR REGULAR

COURSE CODE: SAS 102
COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY I
EXAM VENUE:
STREAM: BSC. ACTUARIAL SCIENCE
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer Question ONE and ANY other two questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY) - (30 MARKS)

a) The random variables X and Y have joint p.d.f given by

$$
f(x, y)=\left\{\begin{array}{cc}
C x y, & 0<x<1,0<y<x \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Compute the value of C hence $E(y)$
b) The random variables X and Y have joint discrete distribution given by

$$
f(x y)=\left\{\begin{aligned}
\frac{x+2 y}{18}, & x=1,2 ; y=1,2 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Find $\quad E(X / Y)$
(6 marks)
c) The relative humidity Y when measured at a given location has a probability density function given by

$$
f(y)= \begin{cases}K y^{3}(1-y)^{2}, & 0<y<1 \\ & 0, \quad \text { otherwise }\end{cases}
$$

Find K given this is a Beta density function hence the probability that the proportion of humidity is better than 50%.
(6 marks)
d) The weekly amount of shut down X for a manufacturing plant has approximately a gamma distribution with $\alpha=5$ and $\beta=3$. The loss to the company in thousands of shillings due to shut down is given by

$$
L=100+40 x+200 x^{3}
$$

Find the expected loss due to a single shut down.
e) Assume that X is normally distributed with a mean of 6 and a standard deviation 4. Determine
(6 marks)

$$
\begin{array}{ll}
\text { i. } & P(X>0) \\
\text { ii. } & P(3<X<7) \\
\text { iii. } & P(-2<X<9)
\end{array}
$$

QUESTION TWO (20 MARKS)

a) The gamma distribution takes the form $f(x)=\left\{\begin{array}{c}\frac{x^{\alpha-1} e^{-x / \beta}}{\beta^{\alpha} \Gamma(\alpha)}, x>0, \beta>0, \alpha>0 \\ 0, x \leq 0\end{array}\right.$, with scale parameter β and shape parameter . Obtain expressions for the mean and variance of tis distribution.
b) The joint density function for two random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{c}
k(2 x+y), 0<x<3,0<y<5 \\
0, \text { otherwise }
\end{array}\right.
$$

Obtain
i. the value of k
ii. The marginal distributions of X and Y

QUESTION THREE (20 MARKS)

a) Given that X assumes the Beta distribution,

$$
f(x)=\left\{\begin{aligned}
\frac{\Gamma(\alpha+\beta)}{\Gamma \alpha \Gamma \beta} x^{\alpha-1}(1-x)^{\beta-1}, & 0<x<1, \alpha>0, \beta>0 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

With $E(X)=\frac{1}{10}$ and $\left(X^{2}\right)=\frac{1}{70}$, obtain expressions for the $E(X)$ and $E\left(X^{2}\right)$ hence the numerical values of α and β.
b) Given $f(x, y)=\left\{\begin{array}{c}\frac{1}{9}(x y), 0<x<2,0<y<3 \\ 0, \text { otherwise }\end{array}\right.$ obtain $\operatorname{var}(Y / X=x)$

QUESTION FOUR (20 MARKS)

a) The probability density function of a random variable X is given by $f(x)=\left\{\begin{aligned} 5 x^{4}, & 0<x<1 \\ 0, & \text { otherwise }\end{aligned}\right.$ Determine:
i. The pdf of a random variable $Y=X^{3}$
ii. $\quad p\left(\frac{1}{8}<Y<1\right.$
b) The joint p.d.f of two random variables X and Y is defined as follows

$$
f(x, y)=\left\{\begin{array}{c}
\frac{1}{16} x y, \quad 0<x<a, 0<y<b \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Suppose we know that: $E(x y)=32 / 9, \quad E(x)=4 / 3$, and that the variables are independent, determine:
i) The mean of Y.
ii) The values of a and b

QUESTION FIVE (20 MARKS)

a) Determine the value of c for which the function below is a joint probability density function hence compute $\operatorname{cov}(X Y)$
$f(x, y)=\left\{\begin{array}{c}c(x+y), 0<x<3, x<y<x+2 \\ 0, \text { otherwise }\end{array}\right.$
(10marks)
b) Suppose a random variable X has the uniform distribution in the interval; $-\alpha \leq x \leq \alpha$, where $\alpha>0$. Determine the value of α such that
i) $\quad P(X>1)=1 / 3$,
ii) $\quad P(X<0.5)=3 / 5$,
iii) $\quad \operatorname{Var}(\mathrm{X})$

