

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS ,ACTUARIAL SCIENCE AND BPS

UNIVERSITYDRAFT EXAMINATION FOR BSc/BEd IN MATHEMATICS

SUPPLEMENTARY/SPECIAL

4th YEAR 1st SEMESTER 2019/2020ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: SMA405

COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS I

EXAM VENUE: AUDITORIUM STREAM: BSc Y4S1

TIME: 2 HOURS EXAM SESSION:

Instructions:

Answer question1 and any other two questions

- 1. Show all the necessary working
- 2. Candidates are advised not to write on the question paper
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Question 1:(30MKS) COMPULSORY

(a) Given the function

$$F(x,y) = 4x^2y - y^2 - 8x^2 - 2x^4 + 10$$

- (i). Find $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$,
- (ii) Determine all the stationary points of F
- (iii) Find $\frac{\partial^2 F}{\partial x^2}$, $\frac{\partial^2 F}{\partial y^2}$ $\frac{\partial^2 F}{\partial x \partial y}$
- (iv) Determine the nature of the stationary points of F (18mks)
- (b) Given the partial differential equation

(i)
$$x \frac{\partial F}{\partial x} - y \frac{\partial F}{\partial y} = 3xy^2$$

(ii)
$$x^2 \frac{\partial^2 F}{\partial x^2} - y^2 \frac{\partial^2 F}{\partial y^2} + x \frac{\partial F}{\partial x} - y \frac{\partial F}{\partial y} = 0$$

(iii)
$$x^2 \frac{\partial^3 F}{\partial x^3} - y^2 \left(\frac{\partial^2 F}{\partial y^2}\right)^4 + x \frac{\partial F}{\partial x} - y \frac{\partial F}{\partial y} = 0$$

State in each the; ORDER, DEGREE and whether LINEAR or NONLINEAR. (12mks)

Question 2:(20MKS) Solve the homogeneous the partial differential equation

(i)
$$(D^2 - DD' - 6D'^2)u = 0$$

(ii)
$$(4D^2 - 12DD' + 9D'^2)u = 0$$

Question 3. :(20MKS)

Solve the inhomogeneous the partial differential equation

(i)
$$(D^2 - 3DD' - 4D'^2)u = e^{x+2y}$$

(ii)
$$(D^2 - DD' - 6D'^2)u = \sin x \cos 2y$$

Question 4: :(20MKS)

Solve the partial differential equation
$$x^2 \frac{\partial^2 F}{\partial x^2} - y^2 \frac{\partial^2 F}{\partial y^2} + x \frac{\partial F}{\partial x} - y \frac{\partial F}{\partial y} = 0$$

2

Use the change of variables from
$$x$$
, y to u , v where $u = xy$, $v = \frac{y}{x}$

Question 5: :(20MKS)

Consider a perfectly flexible elastic string, stretched between two points at x = 0 and x = 1 with uniform tension τ .

If the string is displaced slightly from its initial position while the ends remain fixed, and then released, the string will oscillate. The position P in the string at any instant will then be a function of its distance from one end (x, t) of the string and also of time (t) i.e. u = u(x, t),

. The equation of the motion is given by the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2} .$$

Using variable separation, of the form u(x,t) = X(x)T(t)

(a) Show that the variables X, T satisfy the ordinary differential equations

$$\frac{1}{X}\frac{d^2X}{dx^2} = \frac{1}{T}\frac{d^2T}{dt^2}$$

(b) determine the displacement u(x,t) given

the boundary conditions u(0,t) = u(1,t) = 0 for all time $t \ge 0$ and the initial condition u(x,0) = 0