JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF MATHEMATICS ,ACTUARIAL SCIENCE AND BPS

UNIVERSITYDRAFT EXAMINATION FOR BSc/BEd IN MATHEMATICS
SUPPLEMENTARY/SPECIAL
$4^{\text {th }}$ YEAR $1^{\text {st }}$ SEMESTER 2019/2020ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: SMA405
COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS I
EXAM VENUE: AUDITORIUM
STREAM: BSc Y4S1

TIME: 2 HOURS EXAM SESSION:

Instructions:
Answer question1 and any other two questions

1. Show all the necessary working
2. Candidates are advised not to write on the question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Question 1:(30MKS) COMPULSORY

(a) Given the function
$F(x, y)=4 x^{2} y-y^{2}-8 x^{2}-2 x^{4}+10$
(i).Find $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$,
(ii) Determine all the stationary points of F
(iii) Find $\frac{\partial^{2} F}{\partial x^{2}}, \frac{\partial^{2} F}{\partial y^{2}} \quad \frac{\partial^{2} F}{\partial x \partial y}$
(iv) Determine the nature of the stationary points of F
(b) Given the partial differential equation
(i) $x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial y}=3 x y^{2}$
(ii) $x^{2} \frac{\partial^{2} F}{\partial x^{2}}-y^{2} \frac{\partial^{2} F}{\partial y^{2}}+x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial y}=0$
(iii) $x^{2} \frac{\partial^{3} F}{\partial x^{3}}-y^{2}\left(\frac{\partial^{2} F}{\partial y^{2}}\right)^{4}+x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial y}=0$

State in each the ; ORDER, DEGREE and whether LINEAR or NONLINEAR. (12mks)

Question 2:(20MKS) Solve the homogeneous the partial differential equation
(i) $\left(D^{2}-D D^{\prime}-6 D^{\prime 2}\right) u=0$
(ii) $\left(4 D^{2}-12 D D^{\prime}+9 D^{\prime 2}\right) u=0$

Question 3. :(20MKS)

Solve the inhomogeneous the partial differential equation
(i) $\left(D^{2}-3 D D^{\prime}-4 D^{\prime 2}\right) u=e^{x+2 y}$
(ii) $\left(D^{2}-D D^{\prime}-6 D^{\prime 2}\right) u=\sin x \cos 2 y$

Question 4: :(20MKS)

Solve the partial differential equation $x^{2} \frac{\partial^{2} F}{\partial x^{2}}-y^{2} \frac{\partial^{2} F}{\partial y^{2}}+x \frac{\partial F}{\partial x}-y \frac{\partial F}{\partial y}=0$
Use the change of variables from x, y to u, v where $u=x y, v=\frac{y}{x}$

Question 5: :(20MKS)

Consider a perfectly flexible elastic string, stretched between two points at $x=0$ and $x=1$ with uniform tension τ.
If the string is displaced slightly from its initial position while the ends remain fixed, and then released, the string will oscillate. The position P in the string at any instant will then be a function of its distance from one end (x,) of the string and also of time (t) i.e. $u=u(x, t)$, . The equation of the motion is given by the partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} .
$$

Using variable separation, of the form $u(x, t)=X(x) T(t)$
(a) Show that the variables X, T satisfy the ordinary differential equations

$$
\frac{1}{X} \frac{d^{2} X}{d x^{2}}=\frac{1}{T} \frac{d^{2} T}{d t^{2}}
$$

(b) determine the displacement $u(x, t)$ given
the boundary conditions

$$
u(0, t)=u(1, t)=0 \text { for all time } t \geq 0
$$

and the initial condition

$$
u(x, 0)=0
$$

