

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/ ARTS SPECIAL RESIT 2020/2021 ACADEMIC YEAR REGULAR (MAIN) SPECIAL RESIT

COURSE CODE: SMA 402		
COURSE TITLE: MEASURE THEORY		
EXAM VENUE:	STREAM:	BED SCI/ARTS
DATE:	EXAM SESSION:	
TIME: 2.00 HOURS		

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

a)	Define upper and lower Lebesgue sums	(4 marks)
b)	Show that the measure of a singleton set is zero.	(4 marks)
c)	Give two examples $\sigma - Algebra$.	(2 marks)
d)	State and prove Fatou's Lemma	(10 marks)
e)	Show that $A \cup B \in \mathcal{M}$ and $A \cap B \in \mathcal{M}$, where \mathcal{M} is Lebesgue Measurab	ole Set.
	(10 marks)	

QUESTION TWO

a)	Describe the following terms:	(4 marks)
i.)	Almost everywhere concept	
ii.)	Complete measure space	
b)	Let $g: M \to \mathbb{R}$ be \mathfrak{x} - measurable. Then show that g^2 is \mathfrak{x} - measurable.	(5 marks)
c)	State and prove Monotone Convergence Theorem.	(11 marks)

QUESTION THREE

a)	Show that the length the Outer Measure of interval is equal to the length o	of the interval,
	$I \in [a, b].$	(10 marks)

b) Outline the difference between Lebesgue Integral and Riemann integral. (4 marks)

c)	Describe	the following:	(6 marks)
----	----------	----------------	-----------

- i) Lebesgue Dominated Convergence Theorem
- ii) Fatou's Lemma

QUESTION FOUR

a)	Describe a Measurable Space.	(3 marks)
b)	Show that, if $S, T \subseteq \mathbb{R}$ and $S \subseteq T$ then $\mu^*(S) \leq \mu^*(T)$ <i>i.e</i> μ^*	is monotone.
		(3marks)
c)	Prove that any non-degenerate interval of \mathbb{R} is uncountable.	(10marks)
d)	Define Borel Measurable Subsets of \mathbb{R} and give two examples.	(4 marks)

QUESTION FIVE

- a) Show that every bounded Riemann integral functions over [*a*, *b*] is Lebesque integrable and the two integrals are the same. (10 marks)
- b) Let (X, \mathfrak{x}, μ) be a Measure Space and $f, g \in M^+(X, \mathfrak{x})$ and k a non-negative real constant. Prove that

 $\int (f+g)du = \int f \, du + \int g du \quad \text{and} \quad \int kf du = k \int f du. \tag{10 marks}$