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Abstract

Background

Long-lasting insecticidal nets are an effective tool in reducing malaria transmission. How-

ever, with increasing insecticide resistance little is known about how physiologically resistant

malaria vectors behave around a human-occupied bed net, despite their importance in

malaria transmission. We used the Mbita bednet trap to assess the host-seeking behavior

of insecticide-resistant Anopheles gambiae mosquitoes under semi-field conditions. The

trap incorporates a mosquito netting panel which acts as a mechanical barrier that prevents

host-seeking mosquitoes from reaching the human host baiting the trap.

Methods

Susceptible and pyrethroid-resistant colonies of female Anopheles gambiae mosquitoes

aged 3–5 days old were used in this study. The laboratory-bred mosquitoes were color-

marked with fluorescent powders and released inside a semi-field environment where a

human subject slept inside a bednet trap erected in a traditional African hut. The netting

panel inside the trap was either untreated (control) or deltamethrin-impregnated. The mos-

quitoes were released outside the hut. Only female mosquitoes were used. A window exit

trap was installed on the hut to catch mosquitoes exiting the hut. A prokopack aspirator was

used to collect indoor and outdoor resting mosquitoes. In addition, clay pots were placed

outside the hut to collect outdoor resting mosquitoes. The F1 progeny of wild-caught mos-

quitoes were also used in these experiments.

Results

The mean number of resistant mosquitoes trapped in the deltamethrin-impregnated bed net

trap was higher (mean = 50.21± 3.7) compared to susceptible counterparts (mean + 22.4 ±
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1.31) (OR = 1.445; P<0.001). More susceptible mosquitoes were trapped in an untreated

(mean = 51.9 ± 3.6) compared to a deltamethrin-treated bed net trap (mean = 22.4 ± 1.3)

(OR = 2.65; P<0.001). Resistant mosquitoes were less likely to exit the house when a

treated bed net was present compared to the susceptible mosquitoes. The number of sus-

ceptible mosquitoes caught resting outdoors (mean + 28.6 ± 2.22) when a treated bed net

was hanged was higher than when untreated bednet was present inside the hut (mean = 4.6

± 0.74). The susceptible females were 2.3 times more likely to stay outdoors away from the

treated bed net (OR = 2.25; 95% CI = [1.7–2.9]; P<0.001).

Conclusion

The results show that deltamethrin-treatment of netting panels inside the bednet trap did not

alter the host-seeking behavior of insecticide-resistant female An. gambiae mosquitoes. On

the contrary, susceptible females exited the hut and remained outdoors when a treated net

was used. However, further investigations of the behavior of resistant mosquitoes under nat-

ural conditions should be undertaken to confirm these observations and improve the current

intervention which are threatened by insecticide resistance and altered vector behavior.

Introduction

Reduction in malaria morbidity and mortality over the past decade in sub-Saharan Africa is

largely attributed to the effectiveness of long-lasting insecticidal nets (LLINs) [1]. This has

been possible because the main malaria vectors primarily feed indoors at night, a behavioral

pattern that coincides with the time when human hosts are indoors and asleep [2–4]. However,

extensive use of insecticides has subjected mosquitoes to intensive selection pressure, resulting

in the development of physiological and behavioral resistance [5]. To date, several studies have

reported and described physiological resistance mechanisms of mosquitoes to insecticides

with an aim of improving resistance management strategies [6–10]. However, behavioral resis-

tance to insecticides is poorly documented despite its potential impact on the efficacy of vector

control tools and its effect on residual malaria transmission [11].

The continued success of the current vector control interventions is dependent on the sus-

ceptibility of target mosquito populations to the insecticides used. Until recently, Pyrethroids

were one of the insecticide classes advocated for vector control in public health due to their

low mammalian toxicity, unique modes of action such as fast knockdown, excito-repellency

effects and high insecticidal potency [12]. Some innovative nets treated with a combination of

a pyrethroid and either a non-pyrethroid compound e.g. synergists (piperonyl butoxide) and

pyriproxyfen are under investigation [13–15]. Most recently, some of these nets received con-

ditional endorsement from WHO to be used in areas reporting moderate insecticide resistance

to pyrethroids [16]. Over the past two decades, the use of insecticide-treated nets has increased,

exerting greater selection pressure on malaria vector populations and resulting in higher inci-

dences of pyrethroid insecticide resistance that is likely to affect the effectiveness of vector con-

trol [17]. Some studies have reported the spread of pyrethroid resistance and the mechanisms

involved including target site insensitivity caused by kdr mutations [5, 18] and detoxification

enzymes that metabolize the insecticide before reaching its target site [19]. However, it is less

clear how the observed resistance affects current control measures.
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Existing literature on behavioral changes associated with insecticide use comes mainly from

pyrethroid susceptible mosquitoes but the data on the behavior of pyrethroid-resistant malaria

vectors is sparse and, at times conflicting, highlighting the need for additional research. Insect

behavioral avoidance response to insecticides can be referred to as the ability to move away

from an insecticide-treated area without lethal consequences [20]. Two types of behavioral

avoidance responses by mosquitoes have been largely recognized. These include irritancy

(mosquitoes enter houses but leave early only after making physical contact with the treated

surface) and excito-repellency (mosquitoes exit the treated area without making physical con-

tact or after detecting insecticide vapour from a distance) [21]. The endophilic nature, the

aggressiveness and the time vectors spend indoors, may have an impact on the effectiveness of

residual insecticides as these traits determine the contact time with treated surfaces [22].

Increased foraging earlier in the evening or later in the morning, i.e. times when the human

hosts are not protected by insecticide-treated bednets, has been observed within the principal

African malaria vectors in the An. gambiae and An. funestus species complexes [3]. Exophily

has also been observed as a consequence of indoor insecticide use [22, 23]. This switch in

behavior may limit contact between aggressive susceptible malaria vectors and treated surfaces,

hence threatening the efficiency of indoor interventions. However, with the increased use of

insecticides indoors and the development of insecticide resistance, it is likely mosquitoes may

not be able to avoid contact [24]. It is suggested that avoidance behavior in mosquitoes that

have become insensitive to pyrethroids may weaken due to increased selection pressure

exerted by the insecticides used [25]. Some authors assert that physiologically resistant mos-

quitoes may use the recognition of insecticides as a proxy for host presence [24, 26, 27]. It is

unclear if mechanisms related to insecticide resistance may influence the behavior of malaria

vectors, as any molecular change in the insect nervous system, may have a pleiotropic effect on

nerve function and insect behavior [28].

Given the important role of the current vector control interventions as a means of reducing

the burden of malaria transmission and increasing insecticide resistance, the behavior of

physiologically resistant malaria vectors should be well defined. In this study semi-field experi-

ments were performed to examine the behavior of the major malaria vector Anopheles gambiae
s.s. (hereafter referred to as An. gambiae) towards a human-occupied Mbita bed net trap con-

taining insecticide-treated or untreated netting panel. We hypothesized that pyrethroid-resis-

tant mosquitoes seek and bite human hosts indoors in the presence of indoor-based vector

control interventions. Unfed, susceptible mosquitoes leave the house through windows or

eaves and seek blood meals elsewhere. This study provides information on how the behavior

of physiologically resistant vectors may differ in comparison to their susceptible counterparts,

an aspect that is poorly understood. Given the rapid development of insecticide resistance in a

large number of malaria vectors, there is an urgent need for evidence-based studies on the

behavior of malaria vectors in the presence of vector control interventions if the significant

gains made in reducing malaria morbidity and mortality is to be maintained.

Methods

Mosquito strains used in the experiments

Mosquitoes used in this study consisted of a deltamethrin-selected resistant strain and an

unselected strain of An. gambiae hereafter referred to as resistant and susceptible mosquitoes,

respectively [29]. The mosquitoes were collected from Bungoma County in western Kenya.

The colonies were selected and maintained at the Centre for Global Health Research, Kenya

Medical Research Institute (KEMRI) in Kisumu, western Kenya, under standard rearing con-

ditions of 27 ± 2˚C temperature, relative humidity (RH) of 80 ± 10% and under a L12: D12 h
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light: dark cycle. During the rearing process, each colonized strain had three independent line-

ages that started with 200–250 females at every new generation to limit bottleneck effects [29].

The progeny of F1 wild-caught mosquitoes from the same region were also used to undertake

these experiments.

Resistant strain. This colony underwent deltamethrin selection after each generation.

The 6th generation, which was used in this study was highly resistant with 20% mortality

according to the WHO criteria [30]. According to Machani et al. [29], resistance in this colony

was mainly mediated by the cytochrome P450 detoxification enzyme. The two kdr mutations

1014S and 1014F were present and at high frequencies.

Susceptible strain. This strain shared the same genetic background with the resistant col-

ony but was reared in the absence of insecticide selection pressure. After nine generations

without selection pressure, the population had almost lost resistance to deltamethrin (Mortal-

ity; 92%) and after 13 generations the population showed increased mortality (97.3%). The

14th generation was used in this study. The generation difference between the resistant and

susceptible colony was due to the delayed development in the selected resistant colony.

Wild population. F1 progeny obtained from wild-caught An. gambiae female mosquitoes

from Bungoma area where the resistant and susceptible colonies originated were also used in

this study. Each female (mother) was identified by PCR as An. gambiae s.s according to the

methods of Scott et al. [31]. The wild population had 56% resistance to deltamethrin. It is

reported that the observed resistance was mediated by a mix of metabolic and kdr traits [18,

32–35].

Semi-field set up

The study was carried out at the Centre for Global Health Research, Kenya Medical Research

Institute, Kisumu, Kenya located near the equator in western Kenya. The release and recapture

studies were conducted in an enclosed system dubbed the MalariaSphere. The system measured

20m long × 8m wide [36] with slanted roofing standing 3m high at the sides and 4.5m in the

middle. The entire structure was covered with insect-proof screen netting that prevented mos-

quitoes inside the system from escaping into the environment, or vice versa (Fig 1A). The system

was also double-doored for the same reason. Inside the system a 3m × 3m mud-walled hut was

erected resembling a typical African village house with respect to size, design and mosquito exit/

entry points (eaves, window and door) (Fig 1B). The MalariaSphere had local vegetation and

grass growing in it to mimic the natural vegetation in the study area and to provide shelter for

mosquitoes in the outdoor environment (Fig 1B). Two round clay pots were installed in the

enclosure but outside the hut to act as outdoor mosquito resting sites (Fig 1C). A Mbita bednet

trap with or without an insecticide-treated net panel was erected inside the hut (Fig 1D). Treated

and untreated nets were used on different nights in the same hut. A human subject slept inside

the Mbita bednet trap, treated or untreated, inside the hut each night. To offset any personal bias

due to differential sleeping habits or relative attractiveness to mosquitoes, two sleepers were

recruited for this experiment and took turns sleeping under the bed net. They were instructed

not to consume alcohol or smoke and avoid deodorants during the study period. The volunteers

who slept under the bed net trap served as bait to attract the mosquitoes into the hut but were

not bitten because of the mechanical barrier provided by the netting panel.

Mosquito host-seeking activity using Mbita bednet trap

The Mbita bed-net trap described by Mathenge et al. [37] was used to capture host-seeking

mosquitoes. The trap is a modified conical bed net made of light white cotton cloth instead of

mosquito netting fabric (Fig 2). The trap had two chambers, an upper trap chamber and a
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Fig 1. The semi-field set-up photographs showing (A) The screen house, (B) inside the screen house with a traditional hut and plants, (C) clay pots

(pointed with red arrows) for collecting outdoor resting mosquitoes, (D) erected bed net trap (Mbita trap), (E) exit trap fitted on the window of the hut.

https://doi.org/10.1371/journal.pone.0266420.g001

Fig 2. The Mbita bed net trap. Panel ‘A’ is an illustration of the trap with a person inside. Panel ‘B’ is a photograph of the trap showing (i) the upper chamber

with a mosquito netting panel at its base and (ii) the lower chamber.

https://doi.org/10.1371/journal.pone.0266420.g002
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lower bait chamber, separated halfway by a netting panel (Fig 2A). The panel served to prevent

host-seeking mosquitoes from reaching the human bait sleeping in the lower chamber (Fig

2B). For this experiment, the netting panels were either treated or untreated. The treated net-

ting panels were cut from DawaPlus 2.0, a long-lasting insecticidal net (LLIN) containing 80

mg/m2 deltamethrin. The working principle of the Mbita bednet trap is that host-seeking mos-

quitoes will respond to convective plumes, together with the accompanying body odor and

exhaled breath from the human bait sleeping under the trap. The released mosquitoes after

entering the house will fly up and down the trap responding to the mixed stimuli [37]. Some

mosquitoes will follow and track the source of stimuli and end up being trapped inside the

Mbita trap while others will choose not to follow the stimuli and stay outdoors.

The DawaPlus 2.0 nets were selected for this experiment based on the fact that they were

distributed in the largest proportion in the study site by the National Malaria Control Pro-

gramme in Kenya during the 2017 mass net campaign. The untreated netting panel inside the

Mbita bed net trap was obtained from the local market in Kisumu, Kenya.

Behavioural assay

Batches of 200 uninfected and unfed female An. gambiae mosquitoes aged 3–5 days old from

the resistant or susceptible colonies were gently mouth-aspirated into a clean paper cup. The

mosquitoes were sugar-starved for 6 hours before being released into the Malariasphere. The

two strains were color-marked with either a green or pink fluorescent powder [FTX Series,

Astral Pink; Swada (London) Ltd, London, U.K.] to distinguish them after simultaneous

release into the semi-field environment. The powder was applied by filling a syringe (0.5 ml

with 0.6 × 25 mm needle) with fluorescent powder. The syringe was held through the gauze at

the top of the cup and in one gentle push, the powder was blown out of the syringe. This cre-

ated a cloud of powder inside the cup with the mosquitoes [38]. To eliminate circadian effects

resulting from environmental light: dark cycles, the colonies released were maintained in the

laboratory under a fixed 12-hour light and 12-hour dark cycle. The release in the malaria-

sphere was done early evening outside the hut and at the same time of the day (18.40 hrs) in all

experiments. The volunteer entered the bednet trap 30 minutes after releasing the mosquitoes.

Fifteen (15) tests were conducted with each net (treated or untreated net) for three months

during the dry season. The release was done two times a week with a 3 days break to allow for

the wash-out period. Windows of huts were fitted with exit traps to catch exiting mosquitoes

(Fig 1E). The floor of the hut was covered with white sheets to ease the finding and collection

of knocked-down mosquitoes. Host-seeking mosquitoes caught in the bed net trap were col-

lected and recorded. The field population was used to validate the observed behaviors between

these two strains because of any changes in behavior that may have resulted from colonization.

Indoor and outdoor mosquito resting activity

Mosquitoes that were not caught in the bednet and window exit traps were collected from

inside and outside the hut at 0700HRS using Prokopack aspirators (John W Hock, Gainesville,

FL, USA). For mosquitoes resting indoors, walls and ceilings were systematically aspirated

using progressive down and upward movements along its entire length. Collection of outdoor

resting mosquitoes was done using clay pots (Fig 1C). To do this white mesh from a mosquito

holding cage was placed over the mouth of the pot and mosquitoes resting inside the pot agi-

tated, causing them to fly out of the pot into the cage [39]. The corners of the screen house and

the vegetation cover were checked for the presence of resting mosquitoes using the Prokopack

aspirator.
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WHO net bio-efficacy test

The insecticidal efficacy of the treated net was confirmed by exposing mosquitoes to DawaPlus

2.0 net for 3 mins according to the standard WHO cone bioassay procedure. This was done

with 4–5 day old, non-blood fed, An. gambiae s.s mosquitoes. The bioassays included 5 repli-

cates from both the insecticide-resistant and susceptible strains of An.gambiae. An average of

five mosquitoes were placed per tube. The cone bioassays were conducted using DawaPlus 2.0

long-lasting insecticidal net treated with deltamethrin. The Kisumu strain and F1 progeny of

wild-caught mosquitoes were also used in this experiment. After exposure, the groups of mos-

quitoes were placed in a single 1 L paper cup and provided with cotton wool soaked with 10%

sugar solution for 24 hrs. Their knock-down status was measured 60 min post-exposure and

mortality was recorded after 24 hrs. The survivors from the resistant colony were monitored

for delayed mortality for an additional 48 hours. An untreated net was used as a negative

control.

Scientific and ethical clearance

This study was approved by the Ethical Review Board of the Kenya Medical Research Institute

(KEMRI) protocol number SSC 3434. Prior to the commencement of the study, volunteers

were given an information sheet describing study aims and procedures, risks and benefits of

participating in the study. Written informed consent was obtained from individual volunteers

before the experiments. The experiments were performed in accordance with the institution’s

guidelines and regulations.

Statistical analysis

Data were entered into an Excel spreadsheet from where the distribution of vector collections

was determined. The number of female mosquitoes caught in the bed net trap was interpreted

as host-seeking mosquitoes. Mosquito house entry rate was calculated as the number of free

mosquitoes collected indoors and those found inside bed net and exit traps divided by the total

number released for each group.

Observations of host-seeking and exit behavior of insecticide-resistant and susceptible mos-

quito phenotypes were compared between treatments using a generalized linear model

(GLM). A binomial distribution and logit link function were used to model the data. The

effects of sampling nights on the number of mosquitoes trapped in the bed net trap was fitted

as a random effect. The presence of insecticide on the netting panel inside the bed net trap and

the number of mosquitoes released were fitted as fixed factors.

The insecticide-impregnated panel of mosquito netting present inside the bed net trap was

considered bio-effective when the percentage of mosquitoes knocked down after 60 min post-

exposure was above 95% or when 24-hour mortality or after 24 hours (delayed mortality) was

above 80% in the WHO cone bioassays [40]. Statistical analysis was done using the statistical

program Stata (Version 14, StataCorp, College Station, Texas).

Results

Responses of mosquitoes to bednet traps with untreated or insecticide-

treated netting panels

We tested the response of resistant and susceptible mosquitoes to a human host sleeping

under either insecticide-treated or untreated bed net traps placed inside the hut in the Malaria-

Sphere. In 30 experimental nights (i.e. 15 treated and 15 untreated test repeats) out of 12,000

female An. gambiae s.s (resistant and susceptible) mosquitoes released, 55.5% (6663/12000)
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were recovered (S1 Table). The mean number of resistant females trapped in the treated bed

net trap was 50.21± 3.7 compared to that of the susceptible females 22.4 ± 1.31. The resistant

females were more likely to seek a host sleeping under a treated bed net than susceptible mos-

quitoes (OR = 1.445; 95% CI = [1.25–1.68]; P<0.0001, Fig 3). Significantly more susceptible

females were trapped in an untreated (mean: 51.9 ± 3.6) than a treated bed net trap (mean:

22.4 ± 1.3). When the untreated net was present the susceptible mosquitoes were 2.7 times

more likely to search for a host than when a treated bed net was present (OR = 2.65; 95% CI =

[2.29–3.05]; P<0.0001, Fig 3). GLM analysis indicated that there was a significant effect of

treatment on the number of mosquitoes trapped, with more mosquitoes being caught in the

untreated versus treated bed net trap (S2 Table).

For the wild population, a total of 1013 (50.6%) mosquitoes were recaptured out of 2000 F1

females released. The proportion of the wild population caught in the untreated bed net trap

was slightly higher 41.4% (211/509) % compared to treated bed net trap 33.8% (169/504) (Fig

3). However, this was not statistically significant (OR = 0.773; P = 0.489).

The mortality of the resistant population trapped in the treated bed net trap was 77.7%

(549/706) and 85.2% (144/169) for the wild population. All the susceptible mosquitoes trapped

in the insecticide-treated bed net died.

Insecticide induced exophily of resistant and susceptible populations

Overall, the proportion of mosquitoes that entered the hut when the treated net was present

was high 51.1% (95%, CI = [49.3–52.9]) for the resistant than the susceptible strain 39.8.1%

(95%, CI = [38.1–41.5]) of An. gambiae. The proportion of susceptible mosquitoes entering

the hut increased to 52.6% (95%, CI = [50.8–54.4]) when the untreated net was present

(Table 1). The number of susceptible females caught exiting the hut when a treated bed net

trap was present was 22.3 ± 2.9 compared to the resistant females (Mean: 4.2 ± 0.8). The resis-

tant females were less likely to exit the house when a treated net was present compared to the

susceptible females (GLM, OR = 0.54; P<0.0001). When the untreated bed net was present,

the number of mosquitoes exiting reduced for the susceptible group (Mean: 2.4 ± 0.8)

Fig 3. Mean number of host-seeking mosquitoes from the three populations trapped in the treated and untreated

Mbita bed net trap. Error bars indicate the standard error of the mean.���, p<0.001, NS not significant.

https://doi.org/10.1371/journal.pone.0266420.g003

PLOS ONE Behavioral responses of Anopheles gambaie to LLINs

PLOS ONE | https://doi.org/10.1371/journal.pone.0266420 April 7, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0266420.g003
https://doi.org/10.1371/journal.pone.0266420


(Table 1). Overall, the susceptible females were 4.6-fold more likely to exit the house when

treated bed net trap was present than when the bed net was untreated (GLM, OR = 4.64; 95%

CI = [3.3–6.5]; P<0.0001). For the wild field population, 16 ± 2.1 of the recovered mosquitoes

were caught in the exit trap when the treated bed net trap was present, while 3.6 ± 0.5 when

the untreated net was used.

Mosquito indoor versus outdoor resting behavior in relation to insecticide

use

The average number of mosquitoes caught resting inside the hut when a host slept under a

treated bed net trap was higher 26.4 ± 2.33 for resistant females compared to susceptible

females 18.1 ± 1.34. There was no difference between the proportion of resistant and suscepti-

ble female mosquitoes caught resting indoors in the presence of an untreated bed net trap

(OR = 1.1; 95% CI = [0.97–1.28]; P = 0.121) (Fig 4). The number of susceptible females caught

resting outside the hut when a treated net trap was used, was higher 28.6 ± 2.22 compared to

when an untreated net was present 4.6 ± 0.74. The susceptible mosquitoes were 2.3 times more

likely to stay outdoors away from the treated bed net (OR = 2.25; 95% CI = [1.7–2.9];

P<0.0001; Fig 4).

For the wild population, the average number of females caught resting inside or outside the

hut when a treated bed net was present was 37.6 ± 2.4 versus 13.4 ± 2.34, respectively, com-

pared to the untreated bed net trap (Mean; 47.4 ± 2.1 vs 8.6 ± 1.03 respectively, Fig 4). Even

though the proportion resting indoor or outdoor was high when the treated bed net was pres-

ent, there was no significant difference (Indoor: OR = 1.2; 95% CI = [0.94–1.54]; P = 0.139;

outdoor: OR = 1.11; 95% CI = [0.72–1.71]).

LLIN bioassay and knockdown rates against resistant and susceptible

colonies

Prior to the semi-field trials, the efficacy of the treated bed net was evaluated (S3 Table). The

knockdown response of the resistant females exposed to DawaPlus 2.0 for 60 minutes was 7%

whilst 83% of the susceptible population was knocked down. The 24-hour mortality rate for

the resistant colony was 13% (95% CI = [9.1–15.9]) whilst 92% (95% CI = [89.4–94.9]) for sus-

ceptible population (Fig 5A). The knockdown rate for F1 progeny of the wild population when

exposed to DawaPlus 2.0 for 60 minutes was 36% while the mortality rate after 24 hours was

59% (95% CI = [50.3–67.9]). Kisumu reference susceptible strain had a knockdown rate of

96% and a 100% mortality rate when exposed to DawaPlus 2.0. The mortality rate between 24

and 72 hours (within 1 and 3 days) after last exposure of resistant females to DawaPlus 2.0 ran-

ged from 13% (95% CI = [9.1–15.9] to 16.4% (95% Cl = [12.6–20.2]) (Fig 5B).

Table 1. Number of mosquitoes recaptured and proportion of mosquitoes entering and exiting the hut following the use of treated and untreated bednet trap.

Status of Bednet trap Mosquito population No. released No. recaptured hut entry (%), 95%Cl No. Exiting (Mean± SEM

Treated Resistant 3000 1642 51.1[49.3–52.9] 4.6 ± 0.80

Susceptible 3000 1745 39.8[38.1–41.5] 22.3 ± 2.90

Untreated Resistant 3000 1628 52.1[50.3–53.5] 2.3 ± 0.70

Susceptible 3000 1648 52.6[50.8–54.4] 2.4 ± 0.80

Treated Wild population (F1) 1000 504 86.7[83.7–89.7] 16 ± 2.12

Untreated Wild population (F1) 1000 509 92.5[90.2–94.8] 3.6 ± 0.51

https://doi.org/10.1371/journal.pone.0266420.t001
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Discussion

Physiological resistance in mosquito populations to common public health insecticides across

Africa is widely reported [17, 41]. However, the knowledge of behavioral responses associated

with resistance and downstream impact and efficacy of LLINs is scarcely documented [42].

Monitoring the host-seeking behavior of physiologically resistant mosquitoes in the presence

of indoor vector control tools is necessary to determine whether the efficacy of the tools could

be compromised with the resistance profiles or whether they can be optimized. This study pro-

vides insights into the behavior of pyrethroid-resistant An. gambiae when they encounter pyre-

throid-based LLINs in a free-flight environment similar to the field settings. The results

demonstrate that in the presence of a treated net, the host-seeking performance was not altered

for resistant females, unlike the susceptible females that were observed to exit the house and

remained outdoors when a treated net was used.

One of the consequences of the massive roll-out of LLINs is the change in mosquito behav-

ior where the interventions may select vectors with increased exophily (feeding outdoors early

in the evening or morning hours when LLINs are not in use) because of the exposure to insec-

ticides [11]. This study observed a large proportion of host-seeking susceptible females exiting

the house and resting outdoors than resistant females when the treated net was present. The

observed behavior confirms the excito repellency effect of pyrethroid-treated nets, suggesting

that susceptible mosquitoes may be pushed from indoor-treated environments and resort to

search blood meals outdoors or rest outdoors and initiate their search for a host soon after

dusk, leading to increased outdoor transmission. On the other hand, the findings suggest,

physiologically resistant malaria vectors that have developed the capacity of blood-feeding or

resting indoors in the presence of LLINs, may compromise the effectiveness of LLINs, main-

taining the indoor malaria transmission. The current findings emphasize the need for continu-

ous monitoring and designing of novel resistance management strategies as the prevalence

and intensity of resistance at different locations may have an effect on malaria transmission

[43].

Fig 4. Mean number of mosquitoes resting indoors and outdoors when a treated and untreated bed net trap was

present. Bars labeled with asterisks� indicate findings that are significantly different from others when a treated and

untreated bednet is used. Error bars indicate the standard error of the mean.

https://doi.org/10.1371/journal.pone.0266420.g004
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Examples of spatial avoidance have been observed in malaria vectors in the field, displaying

increased outdoor host-seeking and resting outdoors following the implementation of IRS and

ITNs [44, 45]. When F1 progeny of wild Anopheles gambiae s.l were released, the proportion

trapped attempting to bite and exiting the hut was slightly high when the untreated net was

present compared to when the treated net was in place although these findings were not statis-

tically significant. It is noteworthy to mention that the wild population originated from the

same region and shared the same background as the resistant and susceptible strain. Previous

studies observed that both kdr and metabolic resistance drove pyrethroid resistance in this

mosquito population. The kdr east (1014S) mutation was reported at high frequencies, unlike

1014F which was at a low frequency [18, 34, 46]. The difference in behaviours between the

resistant and the F1 wild population could be due to the heterogeneity of the field population

in terms of their response to the insecticide. This indicates that a substantial part of residual

malaria transmission is occurring outdoors, raising the questions on the effectiveness of LLINs

in reducing malaria infections when susceptible indoor feeding mosquitoes are diverted to

feed outdoors when people are outside LLINs.

The strategy of LLINs in malaria prevention is to deter mosquitoes from entering houses

and to reduce blood-feeding rates, both of which are achieved as a consequence of excito-

Fig 5. Percentage of A) knockdown and mortality rates of the three populations of An.gambiae (F1 from wild

population, susceptible strain, resistant Strain) exposed to insecticide-treated nets (DawaPlus 2) in WHO net bioassay

test for 3 minutes. Knock-down was measured after 1h and mortality after 24h, B) 72 hour delayed mortality for the

resistant strain. Kisumu strain is the standard WHO susceptible reference population. Error bars indicate 95%

confidence intervals. The 80% mortality threshold for calling full susceptibility based on the WHO criteria is indicated.

https://doi.org/10.1371/journal.pone.0266420.g005
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repellent and killing effects of the pyrethroids [47]. In this study, a higher proportion of the resis-

tant females were caught in the treated bed net trap compared to the susceptible females. The

WHO net bioassay tests confirmed lower mortality of resistant mosquitoes suggesting that nets

were effective towards susceptible mosquitoes. One plausible explanation for the difference in

host-seeking behaviour is the pleiotropic effects on nerve function associated with a point muta-

tion in the voltage-gated sodium channels of resistant mosquitoes, as it interferes with the sensi-

tivity of the sensory nervous system to pyrethroids resulting in reduced avoidance behavior [48,

49]. Studies carried out by Diop et al. [50] in the laboratory on host-seeking behavior of mosqui-

toes in the presence of damaged treated nets using a wind tunnel, observed increased perfor-

mance of resistant females with 1014F kdr mutations compared to susceptible. This implies that

in the field, physiologically resistant mosquitoes are likely to spend more time in search of a host

in the presence of insecticides increasing their probability of encountering a host, unlike their

susceptible counterparts that could either die after contacting the insecticides or repelled from

indoor dwellings. In nature, pyrethroid-resistant mosquitoes have been found resting inside

holed LLINs [51]. Such behavior may compromise the efficacy of the current indoor-based vec-

tor control tools resulting in increases in malaria transmission indoors [4]. Recent studies from

western Kenya observed high resistance levels, rates of human blood index and sporozoite rates

in the mosquitoes resting indoors compared to the mosquitoes collected resting outdoors [34,

52]. The study findings are in agreement with similar studies that have observed reduced host-

seeking performance of susceptible mosquitoes in the presence of LLINs unlike the resistant

mosquitoes whose behavior was not altered [26, 51, 53, 54].

This study had limitations, based on genotyping results the kdr mutations(1014S) was

detected at high frequency in our phenotypically susceptible mosquitoes as the mutation was

already fixed in the parent population [29], raising questions about the effect of 1014S muta-

tion on the behaviour of this population in the presence of pyrethroids. Although the 1014S

mutation associated with pyrethroid resistance was observed in the susceptible colony, the

phenotypically resistant mosquitoes had both 1014S and 1014F kdr mutations at high frequen-

cies and increased monooxygenase enzymes. Also due to the design of the trap, which has a

funnel-shaped entry point with no return port for mosquitoes trapped, it’s difficult to measure

the response of mosquitoes after contacting the treated net, however, the catches will likely

reflect the true composition of the host-seeking mosquito population.

The findings of this study show that despite the coverage of the indoor interventions, it is

evident that not all malaria transmission can be controlled with the existing tools that are

indoor-based. The population of vectors that move outdoors are not taken care of, a situation

that creates a pressing need for supplementary vector control tools to control residual

transmission.

Conclusion

The results show that in the presence of a pyrethroid treated net, the host-seeking performance

was not altered for the resistant mosquitoes, unlike the susceptible females that were observed

to exit the house and remain outdoors when a treated net was used. This might be a reason for

continued malaria transmission indoors in areas with high pyrethroid resistance despite the

scaling up of vector control interventions and increased outdoor malaria transmission in sub-

Saharan Africa. This situation calls for urgent deployment of control tools that can comple-

ment the current vector control methods to tackle outdoor malaria transmission. However,

further investigations of the behavior of resistant mosquitoes under natural conditions should

be undertaken to confirm these observations and improve the current interventions which are

threatened by insecticide resistance and altered vector behavior.
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