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Derivation of black Scholes equation using Heston’s 

model with dividend yielding asset 

 
Oduor D Brian 

 
Abstract 
Black Scholes formula is crucial in modern applied finance. Since the introduction of Black – Scholes 
concept model that assumes volatility is constant; several studies have proposed models that address the 
shortcomings of Black – Scholes model. Heston’s models stands out amongst most volatility models 
because the process of volatility is positive and is a process that obeys mean reversion and this is what is 
observed in the real market world. One of the shortcomings of Heston’s model is that it doesn’t 
incorporate dividend yielding asset. Black Scholes partial differential equation revolves around 
Geometric Brownian motion and its extensions. We therefore incorporate dividend yielding asset on 
Heston’s model and use it to model a new Black Scholes equation using the knowledge of partial 
differential equations. 
 
Keywords: Volatility, dividends, geometric brownian motion, black - Scholes formula, Heston’s model 

 
1. Introduction 
From research done in financial literature, the pricing process that is applied in options is 
normally valued in reference to derivatives and securities. In pricing of options we have 
statistical models that use various independent variables to calculate the value of an option. 
We look at the following parameters in formulating mathematical equation for pricing of an 
option; 
 Index price of the underlying asset. 
 Option exercise price over a given time period. 
 A given option expiry date. 
 Dividend paying rate allocated during the life of an option. 
 The risk free - interest rate of the given option. 
 The volatility of the underlying asset at a given time period. 
 
When we formulate these variables into a mathematical equation, the resulting equation is 
what gives the value of the option. The standard Black Scholes equation [2] gives one of the 
option pricing models and it is derived under the following assumptions; 
 Constant volatility. 
 No dividend yield. 
 Interest rates are constant and known. 
 The returns are log - normally distributed. 
 No commission and transaction cost.  
 
In real practice these assumptions are not sometimes applicable in the market. The standard 

pricing model of stock is a normally given as function of some time tS  that follows a 

diffusion process presented by the following Geometric Brownian motion; 
 

tttt dZSdtSdS   ,   (1) 

 
where  is refers to the growth rate of the option (drift rate), 

tS if the price of the option at 

time t ,  is the constant volatility (volatility rate) and 
tdZ is the standard wiener process also 

known as Brownian motion. 
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The studies by Hull and White [5], Stein and Stein [11] and Heston [3] derived stochastic volatilities which considered two factor 

processes where one of the factors become responsible in producing a dynamic of volatility coefficient. Heston’s volatility model 
[3] stands out among these models because the process for volatility is greater than zero and follows a mean reverting process 

which is in contrary to Black Scholes model that assumes constant volatility. Heston’s model [3] also has existence of closed – 

form solution of vanilla options. It assumes that the spot price gives a diffusion process derived by; 

 

tt

t

t dZdt
S

dS
       (2) 

 

where  (linear drift rate) is a constant, tS if the price of the option at time t , 
t  is a non – constant instantaneous volatility and 

tZ is the standard Wiener process. From an overview, this is a process resembling Geometric Brownian motion with a proposed 

volatility given by a mean reverting diffusion process. It is from this Heston’s volatility model that we propose a diffusion process 

with a dividend yielding asset that we use to derive a new Black Scholes differential equation. 

 

2. Preliminaries 

2.1 Itồ Process 

It is the Wiener diffusion process in with constant parameters a and b being functions of the price of an underlying option 

defined by the variables P and t . It can be written mathematically in form a diffusion process given by; 

 

    tdZtPbdttPadP ,,      (3) 

 

In this case the underlying linear drift rate and volatility (variance) rate of the Itồ process are prone to change over a given time 

frame. Considering a small time interval between t and tt  , that changes the from X to XX   is equation (3) is thus 

expressed as;  

 

    ttPbttPaP  ,,     (4) 

 

This small approximation still results in to a relationship between the drift rate and the volatility rate. It assumes that the change of 

the variable P is normally distributed with the drift rate and the variance rate of P remaining constant which are proven to be 

equal to   ttPa ,  and   ttPb ,2
 respectively during the interval between t  and tt  . This is also denoted by 

 ttPbttPaNP  ),(,),(~ . 

 

2.2 Itồ Lemma 

Stochastic differential equations are best solved by Itồ Lemma, where wiener - like differential process are put into mathematical 

formulation of partial differential equations to obtain solutions of stochastic differential equations. In deriving Itồ lemma we 

consider value of a variable P that follows an Itồ process from equation (3), where P is said to have a linear drift rate of a and a 

percentage variance of
2b such that from Itồ lemma, it is stated that a function  tPG ,  that can be differentiable twice in P and 

once in t  forms an Itồ process of the form; 

 

bdZ
P

G
dtb

P

G

t

G
a

P

G
dG



























 2

2

2

2

1
,     (5) 

 

where 




















 2

2

2

2

1
b

P

G

t

G
a

P

G
is the percentage drift and a percentage variance derived by dtb

P

G 2

2













 

 

2.3 Geometric Brownian Motion 

Geometric Brownian motion is a specific Itồ Process following a diffusion process given by  

 

bFdZaFdtdF      (6) 

 

where   aFtFa , ,   bFtFb , and Z  is the standard wiener process. A geometric Brownian motion used in the 

application of stock pricing is given by; 

 

SdZSdtdS   ,    (7) 
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where S is the price of the underlying asset,  is the expected growth rate or the rate of return of the underlying asset and  is 

the percentage volatility of price of the underlying asset. Re - written equation (7) results to the following;  

 

SdZSdtdS       (8) 

 

A discrete time model over a given time frame t  to t that is normally used in pricing of the underlying asset is given by; 

 

tStSS   ,    (9) 

 

where S  is the rate of change in price of the asset S within a time interval t and tZ   such that  is a random variable 

derived by a standardized normal distribution with mean zero and standard deviation of one [5]. 

 

2.4 Stochastic Process 

Stochastic processes are activities or events whose occurrences are random over a given period of time; this makes them obey the 

law of probability. Mathematically it can be defined as a process represented by tX which is a collection of random variables 

 TtX t :  found in a probability space that varies over a given set T . We define various types of stochastic processes below. 

 

2.4.1 Markov Process 

It is a stochastic process where factors from the past history of the asset does not influence the behavior of the current asset price 

since it is believed that the current price already contain relevant information from the past history that could affect the new price 

of the underlying stock. 

 

2.4.2 Wiener Process 

It is a Brownian motion with mean rate of change zero and variance rate of one. It can also be defined as a random variable of 

value Z  that follows a Wiener process with the following properties; 

 

Property 1: Over a small period of time Z is defined by; 

 

tZ       (10) 

  

where   is normally distributed by mean of zero and variance of 1. That is  1,0~ N  

Property 2: Over a two varied short time periods, Z  are independent. That is   0,cov  ji ZZ , ji   [5]. 

2.5 Dividend 

Dividends are rates of payments in form of returns given to stockholders after a given time period normally a year as a reward of 

investments to distribute profits earned by a company or a corporation. 

 

2.6 Dividend yielding Heston Model 

We incorporate dividends on Heston’s model of closed – form solution of vanilla options. It will therefore follow a diffusion 

process having a dividend yielding asset given by; 

 

 ttttt dZdtySdS   )( ,    (11) 

 

where  (linear drift rate) is a constant, ty is the rate of dividend yield, t  is a non – constant instantaneous volatility and tZ is a 

Wiener process. Oduor [10] and Opondo [7]. 

 

3. Main results 

3.1 Derivation of Black Scholes equation using a dividend yielding Heston’s model 

We consider a Heston’s stochastic volatility model with a dividend yielding asset that follows a diffusion process given in 

equation (11). We take a variable G that is a function of S and t  which form a price of any call option that is differentiable twice 

in S and once in t . Then using Itồ lemma we have; 

 

ttttttt dZS
S

G
dtS

S

G

t

G
Sy

S

G
G 




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
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
















 2

2

2

2

1
)(     (12) 

 

Taking the discrete version of equation (11) and (12) we have that; 

 

 tttt ZtySS   )(     (13) 
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and 

 

ttttttt ZS
S

G
tS

S

G

t

G
Sy

S

G
G 


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
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
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
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2

2

2

1
)(     (14) 

 

where S and G denote the changes in S and G in over a given time period defined by t . Using Itồ lemma in section 2.2 

both G and S in equation (13) and (14) depend of the same factors that causes the Z . We need to eliminate the Wiener process 

by choosing a portfolio of an asset and derivative. We consider a portfolio that is short of one derivative and takes :
S

G




 Shares. 

We also define  as the value of the portfolio such that the portfolio holder will have both short and long option position in 

acquiring quantity of shares. By definition. 

 

S
S

G
G




     (15) 

 

The discrete version of equation (15),  from the value of the portfolio over interval t is given by [1]. 

 

S
S

G
G 




     (16) 

 

Substituting equations (13) and (14) in (16), we obtain 

 

  ttttttttttt ZtyS
S

G
ZS

S

G
tS

S

G

t

G
Sy

S

G
















































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2

1
)( 2

2
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This simplifies to 

 

tS
S

G

t

G
tt 
















 2

2

2

2

1
     (17) 

 

Since equation (17) does not involve Z and is no longer stochastic, this makes the portfolio to be risk free over the time t . The 

assumptions listed in the Black Scholes model shows that the portfolio is likely to earn a uniform rate of return during the short - 

term life of the riskless assets. In case it earns more, the arbitrageurs will make a risk free profit by borrowing money from 

financial institutions to buy this risk free portfolio. Contrary if it earned less, they could make a risk free profit by shortening the 

life portfolio and buying a risk free asset. It follows that 

 

tr ,    (18) 

 

where r, is the percentage risk – free interest denoted by  ty as from Heston’s model where  is the underlying growth rate 

and ty  is dividend yielding rate at time t . Substituting equations (15) and (17) into (18) we obtain the following. 
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G
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This simplifies to  

 

   GyS
S

G
S

S

G
y

t

G
ttttt 














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2
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1
    (19) 

 

Equation (20) is the Black Scholes equation with a dividend yielding Heston Stochastic volatility model. If no dividends are 

earned, the equation reduces to the following 

 

GS
S

G
S

S

G

t

G
ttt  
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4. Conclusion 

In this paper we have derived a Black Scholes equation using a dividend yielding Heston’s stochastic volatility model. This can be 

used to help investors on analyzing their investment strategies to make viable decisions.
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