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Abstract: Jump diffusion processes have been used in modern finance to capture discontinuous behavior in asset pricing. Logistic
Brownian motion for asset security prices shows that naturally asset security prices would not usually shoot indefinitely

due to the regulating factor that may limit the asset prices. Geometric Brownian motion can not accurately reflect all

behaviors of stock quotation therefore, Merton who was involved in the process of developing the Black-Scholes model came
up with Merton jump model superimposed on Geometric Brownian motion without considering the dividend yielding rate

of the asset. Therefore in this paper, we have derived the price of dividend yielding asset that follows logistic Brownian

motion with jump diffusion process. This study uses the knowledge of Geometric Brownian Motion and logistic Brownian
motion with Heaviside’s Cover-up Method to develop the price of dividend yielding asset that follows logistic Brownian

motion with jump-diffusion process.
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1. Introduction

In Financial Mathematics, pricing of assets has been greatly applied where options are valued in terms of derivatives and

securities. Option Pricing Models are mathematical models that use certain variables such as Underlying stock or index

price, Exercise price of the option, Expiry date of the option, Expected dividends (in cents for a stock, or as a yield for

an index), Expected risk free interest rate, Expected volatility of the underlying stock or index over the life of the option

to calculate the theoretical value of an option. The theoretical value of an option is an estimate of what an option should

worth using all known inputs. In other words, option pricing models provide us with a fair value of an option. Knowing the

estimate of the fair value of an option, financial professionals could adjust their trading strategies and portfolios.

Therefore, option pricing models are powerful tools for finance professionals involved in options trading. Pricing of options

and assets is partly derived from the interplay of demand and supply and partly from theoretical models. Standard Black-

Scholes equation is derived under some strict assumptions such as Constant volatility, Efficient markets (underlying asset

follows a geometric Brownian motion), the underlying stock does not pay dividends during the option’s life, Interest rates

constant and known, Lognormally distributed returns, European-style options, No commissions and transaction costs and

markets are perfectly liquid. These assumptions are sometimes not applicable in real market world. Option pricing depends

on the hypothesis that the dynamics of the underlying asset is sold if its price decreases and bought if its price increases
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in a perfectly liquid market. A standard model for price of stock as a function of time S(t) evolves according to geometric

Brownian motion.

dS(t) = µS(t)dt+ σS(t)dW (t), (1)

where µ is the rate of growth of the asset(percentage drift), σ is the volatility (percentage volatility) and dW (t) is the wiener

process( Brownian motion). This model is based on the idea that prices appear to be the previous price plus some random

change and that these price changes are independent, prices are taken to follow some random walk-type behavior. This is

the basis for including the stochastic function which is the Wiener process dW (t). The demand and supply curves are also

used to determine the quantity and price at which assets are bought and sold. The supply curve shows what the quantities

the sellers are willing and able to sell at various prices whereas demand curve shows the quantities the consumers are willing

and able to buy at different prices. The interplay between supply and demand brings in what is called market equilibrium.

This is the situation where there is no tendency for change in asset price and quantity. In stock markets the price of an

asset is assumed to respond to excess demand and is expressed as ED(S(t)) = QD(S(t)) − QS(S(t), where ED(S(t) is

excess demand, QD(S(t)) are quantities demanded and QS(S(t)) are quantities supplied at a given time t and price S(t).

The market structure with forces of demand and supply experience upward and downward shifts until a state of market

equilibrium is achieved.

A lot of literature dealing with pricing and hedging of contingent claims are based on a basic assumption that the asset’s price

follows a geometric Brownian motion. Emperical studies have shown that the models based on Geometric Brownian motion

may be limited in describing stock’s price evolution hence inducing mispricing through overestimation or underestimation.

To be able to produce more accurate option pricing, the jump diffusion model was introduced by Merton [19]. The jump

diffusion model unlike the famous Black- Scholes models [3] do not make the same assumptions of normally distributed

logarithmic returns. Stock prices may change due to the general economic factors such as demand and supply, changes

in economic outlook and capitalization rates. These brings about small or marginal movements in stock’s price hence

modeled by a Geometric Brownian motion. On the other hand, the stock’s price may fluctuate due to announcement of

some important information causing over-reaction or under-reaction of the asset prices due to good and/or bad news. This

information may emanate from the firm or industry. Such information that arrives at discrete points in time can only be

modeled by a jump process.

Volatility is a measure of how uncertain we are about the future of stock price, hence the estimation of volatility is crucial

for implementation and valuation of asset and derivative pricing. A dividend is a payment made by a corporation to its

shareholders, usually as a distribution of profits. When a corporation earns a profit or surplus, the corporation is able to

re-invest the profit in the business (called retained earnings) and pay a proportion of the profit as a dividend to shareholders.

A logistic equation that is used in natural science was used to develop a logistic geometric Brownian motion with a price

of dividend yielding assets. In this paper, we have focused on the issues related to jump diffusion model for the price of

dividend yielding assets that follows logistic Brownian motion in financial market.

2. Preliminaries

In this section, we recall some key basic concepts, methodologies and the result that are fundamental in the study:

2.1. Stochastic Process

Any variable whose value changes over time in uncertain way and where we only know the distribution of the possible values

of the process at any point of time is said to follow a stochastic process, Hence it obeys laws of probability. Mathematically,
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a stochastic process X = [X(t); t ∈ (0;α)] is a collection of random variables such that for each t in the index set (0;α),X(t)

is a random variable where X(t) is the state of the process at time t. A discrete time stochastic is the one where the value

of the variable can only change at a certain fixed points in time. On the other hand continuous time stochastic, change can

take any value within a certain range.

2.1.1. Wiener Process

The Wiener process W(t), also called Brownian motion, is a kind of Markov stochastic process which is in essence a series

of normally distributed random variables,and for later time points, the variances of these normally distributed random

variables increase to reflect that it is more uncertain (thus more difficult) to predict the value of the process after a longer

period of time. Instead of assuming W (t) ∼ N(0; t), which cannot support algebraic calculations, the Wiener process W(t)

is introduced. ∆W ≡ ε
√

∆t ( change in a time interval ∆t) where ε v N(0, 1) and ∆W follows a normal distribution. i.e

E[∆W ] = 0 and V ar[∆W ] = ∆t which gives a standard deviation given as std[∆W ] =
√

∆t and

W (T )−W (0) =

n∑
i=1

εi
√

∆t =

n∑
i=1

∆Wi where n =
T

∆t

where W (T )−W (0) also follows a normal distribution where E[W (T )−W (0) = 0 and V ar[W (T )−W (0)] = n.∆t = T which

gives a standard deviation given by std[W (T ) −W (0)] = std[W (T ) =
√
T As n −→ ∞, ∆t converges to 0 and is denoted

as dt,which means an infinitesimal time interval. Correspondingly, ∆W is denoted as dW. In conclusion, dW is invented to

simplify the representation of a series of normal distribution which is a Wiener Process. The properties of Wiener process

W (t) for t ≥ 0 are; has a normal increment i.e W (t)−W (s) v N(0, 1), The increments are independent i.e W(t) - W(s) and

W (µ) are independent , for µ ≤ s < t and There exists a continuity of the path i.e W(t) is a continous function of t.

2.1.2. Generalised Wiener Process

The basic Wiener process, dW that has been developed so far has a drift rate of zero and a variance rate of 1.0. the drift rate

of zero means that the expected value of Z at any future time is equal to its current value. The variance rate of 1.0 means

that the variance of the change in Z in time interval of length T equals T. A generalised Wiener process for a variable X can

be defined in terms of dW as dX = adt+bdW Where mean rate a and variance rate b are constants, adt is the expectation of

dX and bdZ is the addition of noise or variability to the path followed by X, while b is the diffusivity. In a small interval ∆t,

the change in the value of X; ∆X is of the form ∆X = a∆t+ bε∆t where ε is a random variable drawing from standardised

normal distribution thus the distribution of ∆X is thus, Standard deviation of ∆X = b
√

∆t Hence ∆X v N(a∆t; b
√

∆t)

Similar argument to those given for a Wiener process show that the change in the value of X in any time interval T is

normally distributed with mean of change in X = aT , Variance of change in X = b2T and Standard deviation of change in

X = b
√
T Hence ∆X v N(aT ; b

√
T ).

2.1.3. Ito’s Process

This is the generalised Wiener process in which the parameters a and b are functions of the value of the underlying variable

X and time t [20]. An Ito’s process can be written algebraically as; dX = a(X; t)dt + b(X; t)dW . Both the expected drift

rate and variance rate of an Ito’s process are liable to change over time. In a small time interval between t and t+ ∆t, the

changes from X to X + ∆X, is expressed as

∆X = a(X; t)∆t+ b(X; t)ε
√

∆t

This relationship involves a small approximation. It assumes that the drift(mean) rate and variance rate of X remain

constant, equal to a(X; t)∆t and b2(X; t)∆t respectively during the interval between t and t+∆t hence ∆X v N(a(X; t)∆t+

b(X; t)
√

∆t).
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2.1.4. Geometric Brownian motion

A specific type of Ito’s process is the geometric brownian motion of the form; dX = aXdt + bXdW where a(X, t) = aX

and b(X, t) = bX (Black Scholes 1973), in the equation above, the geometric Brownian motion has been applied in stock

pricing and is given as dS = µSdt+ σSdW, where S is the stock price, µ is the expected rate of return per unit time and σ

is the volatility of stock price [20]. The volatility equation is expressed as; dS
S

= µdt+ σdW This model is the most widely

used model of stock price behavior. A review of this model gives a discrete time model, ∆S
S

= µ∆t+ σε
√

∆t, where ∆S is

the change in stock price S within a small interval of time ∆t and ε is a random variable drawn from standardized normal

distribution with mean zero and standard deviation 1. Hence in a short time ∆t, the expected value of return is µ∆t and the

stochastic component of the return is σε
√

∆t. The variance of the fractional rate of return is σ2∆t and σ
√

∆t is the standard

deviation. Therefore ∆S
S

is normally distributed with mean µ∆t and standard deviation σ
√

∆t or ∆S
S
∼ N(µ∆t, σ

√
∆t)

2.2. Jump Diffusion Process

Jump diffusion processes have been used in modern finance to capture discontinuous behavior in asset pricing [25]. Merton

[16] who was also involved in the process of developing the Black-Scholes model [3] came up with Merton jump model as a

better estimation of option prices in a precise way. The Merton model has the same assumptions as those of Black-Scholes

except that for how the asset price is modeled. This model where the asset price has jumps superimposed upon a geometric

Brownian motion is given by

dS(t) = S(t)(µ− λk)dt+ S(t)σdW + S(t)(q − 1)dq(t), (2)

where µ is expected return from the asset, λ is the rate at which jumps happen and k = ε(q − 1) is the average jump size

measured as a proportional increase in the asset price. (q − 1) is the random variable percentage change in the asset price

if the poisson event occurs, ε is the expectation operator over the random variable q, dW(t) is the standard Wiener process

and dq(t) is the independent Poisson process generating the jumps. µdt is adjusted by λkdt in the drift term to make the

jump part unpredictable innovation Merton [16].

2.3. Geometric Brownian Motion with Jump Diffusion process

Black Scholes [3] approach to option price estimations and option trading brought about a great breakthrough in financial

mathematics . In their assumptions, the price of an option follows a geometric Brownian motion. From empirical study,

geometrical Brownian motion cannot accurately reflect all behaviors of the stock quotation. Merton who was also involved

in the process of developing the Black-Scholes model came up with Merton jump model (1976) as a better estimation of

option prices in a precise way. The model where the asset price has jumps superimposed upon a geometric brownian motion

is given by;

dSt = St(µ− λk)dt+ StσdWt + Stdqt (3)

where; µ is the expected return from the asset(asset price growth rate); λ is the rate at which jumps happen; k = ε(q− 1) is

the average jump size measured as a proportional increase in the asset price(mean/magnitude of the random jumps); (q−1)

is the random variable percentage change in the asset price if the poisson event occurs; ε is the expectation operator over

the random variable q; σ is the volatility of the diffusion compound; dWt is the standard Wiener process(Brownian motion);

dqt is the independent poisson process generating the jumps. which can therefore be described as dSt
St

= (µ− λk) + σdWt if

the event does not occur or dSt
St

= (µ−λ k) +σ dWt + q− 1 if the poisson event does occur Thus if λ = 0 and also q− 1 = 0,
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then the stock price return reduces to Black-Scholes model which gives;

St = S0 exp[(µ− λk − σ2

2
)t+ σWt]

i=N∏
i=1

qi (4)

Where N(t) is a poisson process with rate λ, Z(t) is a standard Brownian motion and µ is the drift rate. qi is a sequence of

independent identically distributed (i.i.d) non-negative random variables. Merton (1976) assumed that log(qi) = Yi is the

absolute asset price jump size and normally distributed.

2.4. Logistic Brownian Motion(Non-Linear Brownian Motion)

We obtain Logistic Brownian motion by introducing excess demand functions in the frame- work of the Walrasian (Walrasian-

Samuelson) price adjustment mechanism Onyango [21]. The asset price changes are directly driven by excess demand for

a security. This is the core principle of Standard Walrasian model. To simply the work we do not allow cross-security

effects that might be experienced when the market is multi-security market for which price of one security reacts to the

excess demand of another. The dynamic adjustment rule in such simplified markets may be expressed in continuous-time

Walrasian-Samuelson form by a rate of return;

1

St

d

dt
St = kED[St] (5)

where the parameters t represents continuous time, and k > 0 is a positive market adjustment coefficient (known as speed

of market adjustment). ED(St) is excess demand taken as continuous function of price St. In terms of supply and demand

functions QS(St) and QD(St), the excess demand is given by;

ED(St) = QD(St)−QS(St) (6)

The Walrasian-Samuelson adjustment mechanisms of the jth asset is given by;

1

Sj(t)

d

dt
Sj(t) = hj(EDj(St) if j = 1, 2, 3, . . . , n

1

Sj(t)

d

dt
Sj(t) = 0 if St = 0

Where Sj(t) is the price of the jth asset, hjED(St) is the total excess demand function for the jth asset as a function

of St for the whole market and hj is any (fixed) monotonic increasing differentiable real-valued function Samuelson [23].

Approximating hj by linear function, we have

1

Sj(t)

d

dt
Sj(t) = kj [QDj (S(t))−QSj(S(t))] (7)

where kj is a positive adjustment coefficient and interpreted as “the speed of adjustment” of the market changes in supply

and demand. In deterministic price adjustment model we can make price adjustment model more computational, we take

supply and demand functions to be fixed functions instantaneous price St. Then at Walrasian equilibrium price point S∗,

QD(S∗) = QS(S∗), since excess demand is equal to zero. On the other assumption of fixed supply and demand curves, S∗ is

constant. Away from equilibrium, excess demand for the security will raise its price St. And an excess supply will lower its

price. Thus the rate of change of price, St, with respect to time, t, will depend on the sign of the excess demand. The linear

form of QD(St) and QS(St) about the constant equilibrium price St, gives the deterministic model of price adjustment as;

1

St

d

dt
St = k(α+ β)(S∗ − St) (8)
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where QD(St) = α(S∗−St), QS(St) = −β(S∗−St) and a constant α and β are demand and supply sensitivities respectively.

In logistic Brownian motion we model random fluctuations in supply and demand by changes δα and δβ in their respective

sensitivities. We consider that QD(St) and QS(St) to represent average effects of demand and supply, and suppose that

both curves steepen or level off in response to random observed trades, cumulatively they execute a random walk or Wiener

diffusion process.

From the above models we have

dSt
St(S∗ − St)

= k(α+ β)(δα− δβ)dt (9)

From equation above with k(α+ β) = µ (logistic growth parameter) and (δα− δβ)dt = σdW (noise process) we obtain the

simpler form

dSt
St(S∗ − St)

= µdt+ σdW (10)

Given that trading produces many small random shocks, it is plausible to suppose that W = ε
√
t , with random number ε

following a standard normal distribution. Parameter σ is analogous to the price volatility of security trading in the steadier

market conditions modelled by dynamical geometric Brownian equation. The equation defines an Ito’s Process evolving

according to the stochastic differential equation;

dSt = µSt(S
∗ − St)dt+ σSt(S

∗ − St)dW (11)

We refer to this equation as logistic Brownian motion model or logistic stochastic differential equation. Where St is the

price of the underlying asset at any time t, S∗ is the market equilibrium, µ is the rate of increase of the asset price, σ is

the volatility of the underlying asset and dWt ∼ N(0; dt). Using the Heaveside coverup method, the solution of the model

is given by;

St =
S∗S0

S0 + (S∗ − S0) exp−(µS∗(t− t0) + σS∗Wt)
(12)

This price dynamic is referred to us as logistic Brownian motion of stock price St Oduor [20].

2.5. Logistic Brownian Motion with jump diffusion

Using the stochastic differential equation and incorporating the jump diffusion process in Geometric Brownian motion we

get;

dSt
St(S∗ − St)

= (µ− λk)dt+ σdW + dq (13)

Solving for St using the heaveside coverup method, we will finally get

St =
S∗S0

S0 + (S∗ − S0) exp−[(µ− λk)S∗(t− t0) + σS∗Wt + qtS∗]
(14)

This price dynamic is referred to us as logistic Brownian motion with jump diffusion of stock price St, with the initial price

S0, equilibrium price S∗, µ is the expected return from the asset, λ is the rate at which jumps happen and k is the average

jump size measured as a proportional increase in asset price and q is the poison process generating jumps.
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3. The Price of Dividend Yielding Asset that Follows a Logistic Brow-
nian Motion With Jump Diffusion Process

Using logistic brownian motion with jump diffusion and incorporating the dividend yielding rate since in reality, assets do

pay dividends to the shareholders. In this case, we consider payments of dividends to be continuous.We consider a logistic

jump diffusion model given by;

dSt
St(S∗ − St)

= (µ− λk)dt+ σdW + dq (15)

Incorporating the dividend yielding rate, the resulting equation becomes;

dSt
St(S∗ − St)

= (µ− γ − λk)dt+ σdW + dq (16)

where γ is the dividend yielding rate. The L.H.S of equation (16) can be done using Heaveside coverup method, we obtain;

dSt
St(S∗ − St)

=
A

St
+

B

(S∗ − St)
(17)

To solve for A,

dSt
St(S∗ − St)

=
A

St

this implies that

A =
StdSt

St(S∗ − St)

simplifying and letting St = 0 we obtain

A =
1

S∗ dSt (18)

To solve for B,

dSt
St(S∗ − St)

=
B

(S∗ − St)

which implies that

B =
(S∗ − St)dSt
St(S∗ − St)

simplifying and letting S∗ = St we obtain

B =
1

S∗ dSt (19)

Substituting equation (18) and equation (19) into equation (17) we get;

dSt
St(S∗ − St)

=
1
S∗ dSt

St
+

1
S∗ dSt

(S∗ − St)
(20)

which implies that;
1
S∗ dSt

St
+

1
S∗ dSt

(S∗ − St)
= (µ− γ − λk)dt+ σdW + dq (21)

Integrating the equation (21) with respect to t, we obtain;

1

S∗ ln |St|+
1

S∗ (− ln |S∗ − St|tt0) = (µ− γ − λk)t/tt0 + σW (t) + q(t) (22)

We then obtain;

1

S∗ ln | St
S∗ − St

|tt0 = (µ− γ − λk)t/tt0 + σW (t) + q(t) (23)
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By letting St0 = S0

ln | St
S∗ − St

| − ln | S0

S∗ − S0
| = (µ− γ − λk)S∗(t− t0) + σW (t)S∗ + q(t)S∗ (24)

By merging the L.H.S, we obtain;

ln |St(S
∗ − S0)

(S∗ − St)S0
| = (µ− γ − λk)S∗(t− t0) + σW (t)S∗ + q(t)S∗ (25)

Let (µ− γ − λk)S∗(t− t0) + σW (t)S∗ + q(t)S∗ = τ

ln |St(S
∗ − S0)

(S∗ − St)S0
| = τ (26)

St(S
∗ − S0)

(S∗ − St)S0
= exp τ (27)

St(S
∗ − S0) exp−τ = (S∗ − St)S0 (28)

which is similar to;

St(S
∗ − S0) exp−τ = S∗S0 − StS0 (29)

St(S
∗ − S0) exp−τ + StS0 = S∗S0 (30)

Factorizing St in the L.H.S we obtain

St[(S
∗ − S0) exp−τ + S0] = S∗S0 (31)

This implies that;

St =
S∗S0

S0 + (S∗ − S0) exp−τ (32)

Replacing the value of τ we obtain;

St =
S∗S0

S0 + (S∗ − S0)e−[(µ−γ−λk)S∗(t−t0)+σW (t)S∗+q(t)S∗]
(33)

This price dynamic is referred to us as the price of dividend yielding asset that follows a logistic Brownian motion with

jump diffusion process.

Where St is the asset price, µ is the asset price growth rate, S∗ is the equilibrium price of the asset, S0 is the initial price

of the asset, γ is the dividend yielding rate of the asset, k is the average jump size, λ is the rate at which jumps happen,

q is the poisson process generating the jump, σ is the volatility of the market price, W (t) is the Wiener process(Brownian

motion).

4. Conclusion

In this paper, we introduced the concept of dividend yielding rate of the asset in the logistic brownian motion with jump

diffusion process. The model obtained is useful to the long term investors to know the impact of jump diffusion process

of stocks on assets that yield dividends before allocating decision and profitability of trading strategies to invest on high

dividend yielding assets. It is also be important as it will help the investors to know whether or not asset returns exhibit

jump diffusion.
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