

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL

3RD YEAR 2ND SEMESTER 2021/2022 ACADEMIC YEAR

REGULAR (MAIN)

COURSE CODE:WAB 2310

COURSE TITLE: TEST OF HYPOTHESES

EXAM VENUE:

STREAM: (BSc. Actuarial)

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

- a. Describe the following concepts of hypothesis tests
 - i. Type II error
 - ii. The likelihood ratio test
 - iii. A test statistic
 - iv. Power of a statistical test
 - v. Critical value
 - vi. P-value

[6 marks]

- b. A random sample of 100 observations from a quantitative population produced a sample mean of 26.8 and a standard deviation of 6.5.
 - i. Use the p-value approach to determine whether the mean is different from 28.
 - ii. What is the power of the test if in fact the mean is 27.6[4 marks]
- c. The following n = 10 observations are a sample from a normal population; 7.4, 7.1, 6.5, 7.5, 7.6, 6.3, 6.9, 7.7, 6.5, 7.0 Test H_0 : $\mu = 7.5$ against H_1 : $\mu < 7.5$. Use $\alpha = 0.01$ [5 marks]
- d. Let $X_1, X_2, ..., X_k$ be a random sample from the binomial distribution:Bin(n, p) Find the LR test of level α for testing H_0 : p = 0.4 versus H_1 : p = 0.6.

[6 marks]

e. A precision instrument is guaranteed to read accurately to within two units. A sample of four instrument readings on the same object yielded the measurements: 353, 351, 351 and 355. Does the data provide sufficient evidence to show that σ² > 3, test at α = 0.05 [5 marks]

QUESTION TWO (20 MARKS)

a. Eight individuals were put on two different stimuli to test their reaction times to a command. The reaction times in seconds due to the two different stimuli were recorded as follows;

Stimulus	3	1	1	2	1	2	3	2
Ι								
Stimulus	4	2	3	1	2	3	3	3
II								

i. State any two assumptions, for the use of t test in this situation. [2 marks]

- ii. Does the data provide enough evidence to indicate a difference in mean reaction times for the two stimuli? Test at $\alpha = 0.05$ [6 marks]
- iii. Find the approximate p value for the test. Does this value confirm your conclusions? [4 marks]
- b. Let $y_1, y_2, ..., y_{10}$ be a random sample from the $N(\theta, 1)$ where $\theta = 5$ or $\theta = 6$. Using Neyman –Pearson Lemma, find the best test for testing $H_0: \theta = 6$ versus $H_1: \theta = 5$ at 5% significance level. [8.marks]

QUESTION THREE (20 MARKS)

a. Some research was carried out to test lead levels in water consumed by residents in two sections of a city. 100 samples were taken from each of the sections and the following means and standard deviations recorded.

	Section A	Section B
Mean	34.1	36.0
Standard deviation	5.9	6.0

- i. State an appropriate Null and alternative hypothesis in testing for difference of means for the lead levels. [1 mark]
- ii. Calculate the test statistic and its p- value to test for a difference in the two population means. Use the p-value to evaluate the statistical significance of the results at 5% level.
 [6 marks]
- iii. Use a 95% confidence interval to estimate the difference in mean lead levels for the two sections. Make a comment on the outcome? [5 marks]
- b. Let $X_1, X_2, ..., X_n$ be a random sample from the Normal distribution: $N(\theta, 36)$. Find a uniformly most powerful test critical region of size $\alpha = 0.05$ for testing $H_o: \theta = 18$ against $H_1: \theta < 18$ [8 marks]

QUESTION FOUR (20 MARKS)

a. A single observation is taken from a Poisson distribution with mean θ and used to test the hypothesis $\theta = 4.5$ against the alternative $\theta > 4.5$. The critical region is chosen to be $x \ge 11$.

i.	At what significance level is the test carried out?	[5 marks]
----	---	------------

- ii. Find the power of the test if in fact $\theta = 6.5$ [5 marks]
- b. Test at 5% level of significance whether or not the following samples have come from the same normal population. [10 marks]

Sample A	127	195	162	170	143	205	168	175	197	136	
Sample B	135	200	160	182	147	200	172	186	194	141	155

QUESTION FIVE (20 MARKS)

- a. A bearing used in an automotive application is supposed to have an inside diameter of 3.81cm. A random sample of 25 bearings is selected and the average inside diameter of these bearings is 3.8037cm. Bearing diameter is known to be normally distributed with standard deviation 0.03cm.
 - i. Test the hypothesis that the mean is different from what is known. [5 marks]
 - ii. What sample size would be required to detect a true mean diameter as low as 3.797cm if we wanted the power to be at least 0.9? [5 marks]
- b. A random variable can be modeled by a binomial distribution with parameters n = 10 and P whose value is unknown. Find the critical region for test of:
 - $H_0: P = 0.5 \ against \ H_1: P \neq 0.5 \ at;$
 - i.5% level of significance[5 marks]ii.10% level of significance[5 marks]