

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE ACTUARIAL 3RD YEAR 2ND SEMESTER 2021/2022 REGULAR (MAIN)

COURSE CODE: WAB 2301

COURSE TITLE: METHODS OF ACTUARIAL INVESTIGATIONS I

EXAM VENUE:

STREAM: (BSc Actuarial Science)

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

a. Find the stochastic differential equation for W_t^2 .

b.	Explain what is meant by the continuous-time lognormal model of security prices.	
		(4marks)
c.	When valuing derivatives it is often assumed that the price of the underlying follows a geometric Brownian motion with stochastic differential equation: $dS_t = S_t(\mu dt + \sigma dZ_t)$	
	where Z_t represents a standard Brownian motion. List the 3 advantages and 3 disadvantages of this assumption	((montra)
	disadvantages of this assumption.	(omarks)
d.	i.) Explain what it means for a bond to be default-free.	(2marks)
	ii.) State four possible outcomes of a default.	(2marks)
	iii.) List four types of credit event.	(4marks)
	iv.) Explain what is meant by the recovery rate for a bond.	(2marks)
e.	Explain what is meant by:	
	i.) Structural models .	(2marks)
	ii.) Reduced-form models.	(2marks)
	iii.) Intensity-based models.	(2marks)
f.	Explain what is meant by a credit spread.	(2marks)

(2marks)

QUESTION TWO

a.	A process X _t satisfies the stochastic differential equation:	
	$dX_t = \sigma(X_t)dB + \mu(X_t)dt$	
	whereB _t is a standard Brownian motion.	
	Deduce the stochastic differential equation for the process X_t^3 .	(10marks)

- b. Find the stochastic differential equation for B_t^2 . (5marks)
- c. The shares of Abingdon Life can be modelled using a lognormal model in which the drift parameter, μ =0.104 pa and volatility, σ =0.40 pa. If the current share price is 2.00, derive a 95% confidence interval for the share price in one week's time, assuming that there are exactly 52 weeks in a year. (5marks)

QUESTION THREE

- a. Briefly explain the following
 - i) Yield Curve
 - ii) Inverted yield curve
 - iii) Spot Rate
 - iv) Immunization
 - v) Forward Rate
- b. Bond A is a 10-year bond with 10% coupon. Its price is $P_A = 98.72$. Bond B is a 10-year bond with an 8% coupon. Its price is $P_B = 85.89$. Both bond have the same face value, normalized to 100. Determine S_{10} . (5 marks)
- c. If the spot rates for 1 and 2 years are $s_1 = 6.3\%$ and $s_2 = 6.9\%$, what is the forward rate $f_{1,2}$? (5 marks)

QUESTION FOUR

- a. i.) Write down Ito's Lemma as it applies to a function $f(X_t)$ of a stochastic process X_t that satisfies the stochastic differential equation $dX_t = \sigma_t dB_t + \mu_t dt$, where B_t is a standard Brownian motion. (2marks)
 - ii.) Hence find the stochastic differential equations for each of the following processes:
 - (a) $G_t = \exp(X_t)$ (b) $Q_t = X_t^2$ (c) $V_t = (1 + X_t)^{-1}$ (d) $L_t = 100 + 10X_t$ (e) $J_t = \ln B_t$ (f) $K_t = 5B_t^3 + 2B_t$

(18 marks)

QUESTION FIVE

a. Company X has just issued some 5-year zero-coupon bonds. A continuous-time twostate model is to be used to model the status of the company and to calculate the fair price of the bonds. It is believed that the risk-neutral transition rate for failure of the company is $\lambda(t)=0.002t$, where t is the time in years since the issue of the bonds. The 5-year risk-free spot yield is 5.25% expressed as an annual effective rate.

(10 marks)

- (i) Calculate the risk-neutral probability that the company will have failed by the end of 5 years. (5marks)
- (ii) In the event of failure of the company, the bonds will make a reduced payment at the maturity date. The recovery rate for a payment due at time t is: $\delta(t)=1-0.05t$

Calculate the fair price to pay for £100 nominal of a Company X bond, taking into account the possibility of company failure. (5marks)

b. Let $\{X_t\}$ be a continuous-time stochastic process defined by the equation $X_t = \alpha W_t^2 + \beta$,

Where $\{W_t\}$ is a standard Brownian motion and α and β are constants. By applying Ito's Lemma, or otherwise, write down the stochastic differential equation satisfied by X_t . (10marks)