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OASIS OF KNOWLEDGE



QUESTION  ONE 

a. Find the stochastic differential equation for Wt
2
.                                                    (2marks) 

 

b. Explain what is meant by the continuous-time lognormal model of security prices.                   

 

                                                                                             (4marks) 

 

c. When valuing derivatives it is often assumed that the price of the underlying security 

follows a geometric Brownian motion with stochastic differential equation:  

dSt= St(µdt+ σdZt) 

whereZt represents a standard Brownian motion. List the 3 advantages and 3 

disadvantages of this assumption.                                                                           (6marks) 

 

d. i.) Explain what it means for a bond to be default-free.                                          (2marks) 

ii.) State four possible outcomes of a default.                                                         (2marks) 

iii.) List four types of credit event.                                                                          (4marks) 

iv.) Explain what is meant by the recovery rate for a bond.                                    (2marks) 

 

e. Explain what is meant by: 

i.) Structural models .                                                                                      (2marks) 

ii.) Reduced-form models.                                                                                (2marks) 

iii.) Intensity-based models.                                                                               (2marks) 

 

f. Explain what is meant by a credit spread.                                                               (2marks) 

 

QUESTION  TWO 

a. A process Xt satisfies the stochastic differential equation:  

dXt= σ(Xt)dB + µ(Xt)dt 

whereBt is a standard Brownian motion.  

Deduce the stochastic differential equation for the process Xt
3
.                           (10marks) 

 

b. Find the stochastic differential equation for Bt
2
.                                                     (5marks) 

 

c. The shares of Abingdon Life can be modelled using a lognormal model in which the drift 

parameter, µ=0.104 pa and volatility, σ=0.40 pa.  If the current share price is 2.00, derive 

a 95% confidence interval for the share price in one week’s time, assuming that there are 

exactly 52 weeks in a year.                                                                                      (5marks) 



 

 

QUESTION  THREE 

a. Briefly explain the following                                             (10 marks) 

i) Yield Curve 

ii) Inverted yield curve 

iii) Spot Rate 

iv) Immunization 

v) Forward Rate 

 

b. Bond A is a 10-year bond with 10% coupon. Its price is PA  = 98.72. Bond B is a 10-year 

bond with an 8% coupon. Its price is PB = 85.89. Both bond have the same face value, 

normalized to 100.  Determine S10 .                                                                       (5 marks) 

c. If the spot rates for 1 and 2 years are s1 =6.3% and s2 = 6.9%, what is the forward rate 

 f 1,2 ?                                                                                                                       (5 marks) 

 

QUESTION  FOUR 

a.  i.) Write  down Ito’s Lemma as it applies to a function f(Xt) of a stochastic process Xt 

that satisfies the stochastic differential equation  

dXt =σtdBt+ µtdt , where Bt is a standard Brownian motion.                                  (2marks) 

 

ii.) Hence find the stochastic differential equations for each of the following processes:  

  (a) Gt = exp(Xt)   

  (b) Qt = Xt
2
 

(c) Vt = (1+ Xt)
-1

 

 (d) Lt=  100 + 10Xt 

 (e) Jt = lnBt 

 (f)Kt = 5Bt
3
 + 2Bt                                                                                     (18 marks) 

 

QUESTION  FIVE 

a. Company X has just issued some 5-year zero-coupon bonds.  A continuous-time two-

state model is to be used to model the status of the company and to calculate the fair 

price of the bonds.  It is believed that the risk-neutral transition rate for failure of the 

company is λ(t)=0.002t, where t is the time in years since the issue of the bonds.  The 

5-year risk-free spot yield is 5.25% expressed as an annual effective rate.  



(i) Calculate the risk-neutral probability that the company will have failed by the 

end of 5 years.                                                                                        (5marks) 

 

(ii) In the event of failure of the company, the bonds will make a reduced 

payment at the maturity date.  The recovery rate for a payment due at time t is:   

δ(t)=1-0.05t 

 Calculate the fair price to pay for £100 nominal of a Company X bond, taking into 

account the possibility of company failure.                                                      (5marks) 

 

b. Let {Xt} be a continuous-time stochastic process defined by the equation Xt= αWt
2
+ 

β,  

Where {Wt} is a standard Brownian motion and αandβ are constants.  

By applying Ito’s Lemma, or otherwise, write down the stochastic differential 

equation satisfied by Xt.                                                                                  (10marks) 

 

 


