JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
 ACTUARIAL
 $4^{\text {th }}$ YEAR $2^{\text {nd }}$ SEMESTER 2021/2022
 REGULAR (MAIN)

COURSE CODE: WAB 2404
COURSE TITLE: COMPUTATIONAL FINANCE.
EXAM VENUE: STREAM: (BSc Actuarial Science)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

a. Define
i.) Intrinsic value.
ii.) Write down the intrinsic value of a put option at time t.
b. Suppose that the price of Share X is 112 and that a put option on Share X with an exercise price of 110 is currently priced at 5 . Calculate the intrinsic value and time value of the option.
(2marks)
C. Given a filtered probability space $\left(\Omega, \mathrm{F}, \mathrm{F}_{\mathrm{t}}, \mathrm{P}\right)$, what are the conditions for a stochastic process X_{t} to be called a martingale with respect to the filtration, F_{t} ?
d. What is meant by saying that the process $\left\{\mathrm{Y}_{\mathrm{t}}\right\}$ is a martingale with respect to another process $\left\{\mathrm{X}_{\mathrm{t}}\right\}$?
e. Find the stochastic differential equation for $\mathrm{W}_{\mathrm{t}}{ }^{2}$.
f. Suppose that the current time corresponds to $t=5$ and that the force of interest has been a constant 4% pa over the last 5 years. Suppose also that the force of interest implied by current market prices is a constant 4% pa for the next 2 years and a constant 6% pa thereafter. If $T=10$ and $S=15$, write down or calculate each of the four quantities $P(t, T)$, $r(t), f(t, T, S)$ and $r(t, T)$ using the notation above.
g. state and explain two basic types of options.
h. A fixed-interest security pays coupons of 8% pa half-yearly in arrear and is redeemable at 110%. Two months before the next coupon is due, an investor negotiates a forward contract to buy $£ 60,000$ nominal of the security in six months’ time. The current price of the security is $£ 80.40$ per $£ 100$ nominal and the risk-free force of interest is 5% pa. Calculate the forward price. (4 marks)
i. State and explain the assumptions underlying the Black-Scholes model.

QUESTION TWO

a. State five parameters used to value an option on a non-dividend-paying share.
b. $\left\{X_{t}\right\}$ be a continuous-time stochastic process defined by the equation $\mathrm{X}_{\mathrm{t}}=\alpha \mathrm{W}_{\mathrm{t}}^{2}+\beta$, where
$\left\{W_{t}\right\}$ is a standard Brownian motion and $\alpha \beta$ and are constants.
By applying Ito's Lemma, or otherwise, write down the stochastic differential equation satisfied by X_{t}.
c. Assume that the spot rate of interest at time $t, S(t)$, can be modelled by $S(t)=e^{-2 \mu W(t)}$ where
$\mathrm{W}(\mathrm{t})$ is a Brownian motion with drift coefficient μ and volatility coefficient 1 such that $\mathrm{W}(0)=0$.
(i) Write down an expression for $\mathrm{W}(\mathrm{t})$ in terms of a standard Brownian motion, $B(t)$.
(ii) Show that $\{\mathrm{S}(\mathrm{t}): \mathrm{t}>0\}$ is a continuous-time martingale.
(8mark)

QUESTION THREE

a. Consider an American put option on a non-dividend-paying share.

List the five factors that determine the price of this option and, for each factor, state whether an increase in its value produces an increase or a decrease in the value of the option.
b. Let X be an Ito process that satisfies
$d X_{t}=\mu\left(X_{t}, t\right) d t+\sigma\left(X_{t}, t\right) d B_{t}$
where B_{t} is a standard Brownian motion. Let $f\left(X_{t}, t\right)$ be a function of t and X_{t}.
(i) By considering Taylor's theorem, suggest a partial differential equation that must be satisfied $\operatorname{byf}\left(\mathrm{X}_{\mathrm{t}}, \mathrm{t}\right)$ in order that it is a martingale.
(ii) Verify that your equation holds whenf $\left(\mathrm{X}_{\mathrm{t}}, \mathrm{t}\right)=\mathrm{B}_{\mathrm{t}}{ }^{2}-\mathrm{t}$.
c. A process X_{t} satisfies the stochastic differential equation:
$d X_{t}=\sigma\left(X_{t}\right) \mathrm{dB}_{\mathrm{t}}+\mu\left(\mathrm{X}_{\mathrm{t}}\right) \mathrm{dt}$
where B_{t} is a standard Brownian motion.
Deduce the stochastic differential equation for the process X_{t}^{3}.

QUESTION FOUR

a. Derive the following relationship.

$$
f(0, t, T)=\frac{1}{T-t} \log \frac{P(0, t)}{P(0, T} \text { for } t<T
$$

b. Under one particular term structure model:

$$
f(t, T)=0.03 e^{-0.1(T-t)}+0.06\left(1-e^{-0.1(T-T)}\right)
$$

Sketch a graph of $f(t, T)$ as a function of T, and derive expressions for $p(t, T)$ and $r(t, T)$.
(15 marks)

QUESTION FIVE

a. Derive the Black-Scholes equation.
b. An investor buys, for a premium of 187.06, a call option on a non-dividend-paying stock whose current price is 5,000 . The strike price of the call is 5,250 and the time to expiry is 6 months. The risk-free rate of return is 5% pa continuously compounded.
The Black-Scholes formula for the price of a call option on a non-dividend-paying share is assumed to hold.
(i) Calculate the price of a put option with the same time to maturity and strike price as the call.
(5marks)
(ii) The investor buys a put option with strike price 4,750 with the same time to maturity. Calculate the price of the put option if the implied volatility were the same as that in (i).
[You need to estimate the implied volatility to within 1% pa of the correct value.]
(5 marks)

