



# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

### SCHOOL OF

## UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF IT

# 2<sup>ND</sup> YEAR 1<sup>ST</sup> SEMESTER 2021/2022 ACADEMIC YEAR

# MAIN CAMPUS

#### **COURSE CODE: ICB 1209**

#### **COURSE TITLE: INTRODUCTION TO NUMBER THEORY**

DATE:

TIME:

TIME: 2 HOURS

**Instructions:** 

Answer question ONE and ANY other TWO questions.

#### **QUESTION 1 (30 MARKS)**

(a) State four properties of real numbers. (4 marks)

- (b) Suppose a, b and c are integers, prove that
- (i) If a/b and b|c, then a|c. (3 marks)
- (ii) state the steps in RSA encryption scheme (3 marks)
- (c) Given that a = 573 and b = -16, find the integers q and r such that

a = bq + r and 0 < r < b. (4 marks)

(d) Let 8316 a = and 19800 b =. Express each number in its prime factors and hence find:

- (i) gcd(a,b) (2 marks)
- (ii) lcm(a,b) (2 marks)

(e) State and prove Fermat's Little Theorem. (4 marks)

- (f) Prove that if gcd(a,b)=1 and that a and b both divide c, then ab divides c. (4 marks)
- (g) Solve the congruence equation  $8x \equiv 12 \pmod{28} (4 \text{ marks})$

#### **QUESTION TWO (20 MARKS)**

1. (a) Use the Euclidean algorithm to compute the greatest common divisor (217,161) (5 marks)

(b) Solve the linear equation 217x - 161y = 21 or explain why there are no solutions. (10marks)

(c) Let a, b, c, and n be integers. Prove that

if  $a\equiv b(modn)$  and  $c\equiv d(modn)$ , then  $a-c\equiv b-d(modn)$ . (5 marks)

#### **QUESTION THREE (20 MARKS)**

a. Define the Chinese Remainder Theorem. (2 marks)

b. Use the Chinese Remainder Theorem to solve the simultaneous congruences

| $x \equiv 3 \pmod{5}$    |            |
|--------------------------|------------|
| $x \equiv 2 \pmod{7}$    |            |
| $x \equiv -1 \pmod{11}.$ | (10 marks) |

c. Calculate the continued fraction expansion of 4169/3864 (8 marks)

#### **QUESTION FOUR (20 MARKS)**

- (a) DEFINE the term prime. (1 mark)
- (b) PROVE that there are infinitely many primes. (3 marks)
- (c) state the Principle of Mathematical Induction (PMI) (2 marks)
- (d) Use mathematical induction to prove that, for  $n \in N$ , we have

$$1 + 2 + 3 + \_\_\_ + (n - 1) + n = \frac{n(n + 1)}{2}$$
 (5 marks)

Can you also prove this formula more directly, without using induction? If so, how? (2 marks)

|     | (e) Find the least common multiple and the greatest          | common divisor of $2^55^67^211$ and |
|-----|--------------------------------------------------------------|-------------------------------------|
|     | $2^{3}5^{8}7^{2}13.$                                         |                                     |
|     | Let $a = 2^4 13^2 17$ , $b = 2^3 5 13$ . Find the following: |                                     |
|     | (a) The prime factorization of $(a, b)$                      |                                     |
|     | (b) The prime factorization of [ <i>a</i> , <i>b</i> ]       | (4 marks)                           |
| (f) | Determine the prime factorization of 13832000                | (3 marks)                           |

#### **QUESTION FIVE (20 MARKS)**

- (a) What is meant by the term 'Cryptography'? (1 mark)
- (b) Why is modular arithmetic key to cryptography? (3 marks)
- (c) Describe the steps in Diffie-Hellman key exchange algorithm and state why it works. (10 marks)
- (d) Suppose that two parties A and B wish to set up a common secret key (D-H key) between themselves using the Diffie Hellman key exchange technique. They agree on 7 as the modulus and 3 as the primitive root. Party A chooses 2 and party B chooses 5 as their respective secrets. Calculate their D-H key. (6 marks)