

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF AGRICULTURAL AND FOOD SCIENCES

SECOND YEAR SECOND SEMESTER UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN ANIMAL SCIENCE

2021/2022 ACADEMIC YEAR

COURSE CODE: AAB 1211COURSE TITLE: POPULATION GENETICSDATE:STREAM: BSC. ANIMAL SCIENCE

TIME: 2 HOURS

Instructions:

1. Answer ALL questions in Sections A and B and ANY ONE question in Section C.

SECTION A [10 MARKS]

Answer ALL Questions from this Section.

- 1. Differentiate between Mendelian and population genetics.
- 2. A hypothetical specification of the MN blood group locus of two cattle populations is given in the table below. Explain how the two populations differ in their genetic structure.

(4 marks)

Population		Blood Group		
-	MM	MN	NN	Total
1	0.24	0.48	0.28	1.00
2	0.03	0.44	0.53	1.00

3. Differentiate between the following:

	a) complete and incomplete dominance.	(2 marks)
	b) Hardy-Weinberg Law and Hardy-Weinberg equilibrium.	(2 marks)
	c) intra- and inter-locus interactions of alleles.	(2 marks)
4.	Define the following as used in population genetics;	
	a) random mating	(2 marks)
	b) migration and mutation	(3 marks)
5.	State six (6) factors that change gene and genotype frequencies.	(3 marks)

SECTION B [30 MARKS]

Answer ALL Questions from this Section.

6.	Describe the four (4) degrees of dominance with respect to fitness.	(4 marks)
7.	What are the two main types of selection? How do they operate?	(4 marks)
8.	a) What is assortative mating in population genetics?	(2 marks)

(2 marks

b) Explain the main types of assortative mating.	(4 marks)		
c) Distinguish between Non-recurrent and recurrent mutations. Illustrate how they of			
	(4 marks)		
9. With the aid of a diagram, explain how:			
a) Migration may change the gene and genotype frequencies of a population.	(5 mark)		
b) Genes are transmitted from parents to progeny.	(5 marks)		
10. Explain the main applications of Hardy-Weinberg Law.	(2 marks)		

SECTION C [20 MARKS]

Answer ONE Question from this Section.

11. a) Outline the four (4) steps in the proof of Hardy-Weinberg Law. State the a each step.	ssumptions for (12 marks)	
b) How long does it take a population to reach equilibrium?	(3 marks)	
c) Assume there are 2 alleles, B and b, at a locus. If a population of 100 animals are		
classified genotypically with respect to this locus and the number in each g	genotype	
counted as follows: $BB = 30$: $Bb = 60$; and $bb = 10$.		
i. Calculate the genotype frequencies.ii. Calculate gene frequencies.	(2 marks) (3 marks)	
12. a) Explain the role of natural selection in evolution.	(2 marks)	
b) Discuss the concept of reproductive isolation mechanisms (RIMs) as drivers of		
evolution.	(18 marks)	
13. Write short notes on the following:		
a) Random genetic drift.	(4 marks)	
b) Reverse mutation.	(4 marks)	
c) Mutation rate.	(4 marks)	
d) Frequency of mutation.	(4 marks)	
e) Polymorphism.	(4 marks)	