JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
 ACTUARIAL
 $2^{\text {ND }}$ YEAR $2^{\text {ND }}$ SEMESTER 2022/2023
 REGULAR (MAIN)

COURSE CODE: WAB 2206
COURSE TITLE: ACTUARIAL MATHEMATICS I
EXAM VENUE: STREAM: (BSc Actuarial Science)
DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a. Define the following terms
i.) An annuity certain
ii.) An "interest-only" loan
iii.) A mortgage or repayment loan
b. If μ_{x} takes the constant value 0.001 between ages 25 and 35 , calculate the probability that a life aged exactly 25 will survive to age 35 .
(2marks)
c. Given that $e_{50}=30$ and $\mu_{50-\mathrm{t}}=0.005$ for $0 \leq t \leq 1$, what is the value of e_{51} ? (3marks)
d. Describe the cashflows for an organisation that issues a zero-coupon bond. (2marks)
e. An investor purchased a three-year index-linked security on 1.1.2001. In return the investor received payments at the end of each year plus a final redemption amount, all of which were increased in line with the index given in the table above. The payments would have been $£ 600$ each year and $£ 11,000$ on redemption if there had been no inflation. Calculate the payments actually received by the investor.
(3marks)
f. An 8 -month loan is repayable by a single payment of $\mathfrak{£} 100,000$. If the loan is issued at a rate of commercial discount of 15% pa, how much was initially lent to the borrower?
(2marks)
g. Find the effective annual interest rate that is equivalent to a simple interest rate of 3% pa over 4 years.
(3marks)
h. Define the effective rate of interest over a given time period
(2marks)
i. Calculate the present value on 1 September 2002 of payments of $£ 280$ due on 1 September 2004 and $£ 360$ due on 1 March 2005. Interest is 15% pa effective.
j. An investment of $£ 1,000$ made at time 0 is accumulated at the following rates: 8% per annum simple for two years, followed by a rate of discount of 6% per annum convertible monthly for two years. Calculate the accumulated amount of the investment after 4 years. (2marks)
k. Find P , if $\mathrm{I}=5, \mathrm{R}=125, \mathrm{i}=10 \%$ and $\mathrm{n}=20$.
(2marks)

QUESTION TWO (20 MARKS)

a. Show algebraically that $e_{\mathrm{x}}=\mathrm{P}_{\mathrm{x}}\left(1+e_{\mathrm{x}+1}\right)$
(5marks)
b. Show that, if mortality experience conforms to Gompertz' Law, then:
$-\log \left(-\log P_{x}\right)=\log \left[\frac{\log c}{B(C-1)}\right]-x \log c$
Suggest how this property could be used.
(10marks)
c. Show that $\operatorname{Sx}(\mathrm{t})=\frac{\mathrm{S}(\mathrm{x}+\mathrm{t})}{\mathrm{S}(\mathrm{x})}$
(5marks)

QUESTION THREE (20 MARKS)

a. The force of interest is given by

$$
\delta(\mathrm{t})=\left\{\begin{array}{cc}
0.08-0.001 t & 0 \leq t<3 \\
0.025 t-0.04 & 3 \leq t<5 \\
0.03 & 5 \leq t
\end{array}\right.
$$

Calculate the present value at time 2 of a payment of $£ 1,000$ at time 10. (5 marks)
b. If the force of interest is:

$$
\delta(\mathrm{t})=\left\{\begin{array}{lr}
0.08 & 0 \leq t<5 \\
0.13-0.01 t & 5 \leq t
\end{array}\right.
$$

find expressions for the accumulation factor from time 0 to time t.
c Derive the following expressions
i. $\quad f_{x}(t)=-\frac{d}{d t} t p_{x}$
ii. $\quad{ }_{t} q_{x}=t q_{x}$ (if deaths are uniformly distributed between the ages of x and $\mathrm{x}+1$)

QUESTION FOUR (20 MARKS)

a. Show that the effective rate of interest, when accumulating using a constant simple interest rate, decreases over time.
(5marks)
b. The force of interest is:
$\delta(t)=0.01 t+0.04 \quad 0 \leq t \leq 5$
Find the present value at time 0 of the payment stream $0.5 \boldsymbol{t}+\mathbf{2}$, which is received between time 0 and 5.
c. An investor deposits $£ 2,000$, then withdraws level annual payments starting one year after the deposit was made. Immediately after the 11 th annual drawing, the investor has $£ 400$ left in the account. Calculate the amount of each withdrawal, given that the annual rate of interest is 8%

QUESTION FIVE (20 MARKS)

Show that $f x(t)={ }_{t} P_{x} u_{x+t}$

