The polyoxometalate (POM) anion of europium (III) decatungstate [EuW₁₀O₃₆]⁹exhibits great luminescence quantum yields of approximately 67% but suffers reduced red light emissions that are due to the low ${}^5D_0 \rightarrow {}^7F_2$ transmissions. Fine tuning the microenvironment around [EuW₁₀O₃₆]⁹- anion through intercalation into different compositions of layered double hydroxides (LDHs) materials, greatly enhances the ${}^5D_0 \rightarrow {}^7F_2$ transmissions. The positive nanosheets in LDHs provide a conducive microenvironment for strong transitions of ${}^5D_0 \rightarrow {}^7F_2$ to occur. The ratio $I({}^5D_0 \rightarrow {}^7F_2)/I({}^5D_0 \rightarrow {}^7F_1)$ for the observed intensities vary from 0.44 for [EuW₁₀O₃₆]⁹-ion to 14.08, 6.20, 1.75 and 1.59 in Mg₂Al-EuW₁₀O₃₆, LYbH-EuW₁₀O₃₆, Zn₂Al-EuW₁₀O₃₆ and LEuH-EuW₁₀O₃₆ materials respectively (Mg₂Al = magnesium aluminum LDHs, Zn₂Al = Zinc aluminum LDHs, LYbH = layered ytterbium hydroxide LDHs, and LEuH = layered europium hydroxide LDHs). As such, these materials can find a wide application in processes that require the red light luminescence.