

Journal of Global Research in Mathematical Archives

ISSN 2320 - 5822

UGC Approved Journal

RESEARCH PAPER

Available online at http://www.jgrma.info

NORM BOUNDS FOR CONTRACTIVE NORMALOID OPERATORS

N. B. Okelo and P.O Mogotu

Department of Pure and Applied Mathematics

Jaramogi Oginga Odinga University of Science and Technology,

Box 210-40601, Bondo-Kenya

Email: bnyaare@yahoo.com

Abstract: In this paper we establish the upper and lower norm estimates of contractive normaloid operators using inner product, Schwarz inequality for non-negative real numbers and some operator inequalities.

Keywords: Normaloid operators, Contractive operators, inner product, Schwarz inequality and numerical radius.

INTRODUCTION

We establish some inequalities for positive contractive normaloid operators. For this purpose, some inequalities for vectors in inner product spaces due to [2, 4 and 6]. Let H a complex Hilbert space with an inner product $\langle .,. \rangle$ and B(H) the algebra of all bounded linear operators on H. $\|\cdot\|$ will also denote the usual operator norm. An operator $S \in B(H)$ is said to be normaloid if

 $||S|| = \sup\{|\langle Sx, x \rangle| : ||x|| = 1\}$ and contractive if $||S|| \le 1$.

BASIC CONCEPTS AND PRELIMINARIES

Here we start by defining some key terms that are useful in the sequel.

Definition 2.1. An inner product on a vector space V is a map $\langle .,. \rangle : V \times V \to \mathbb{K}$ such that $\forall x, y, z \in V$ and $\lambda \in \mathbb{K}$; the following properties are satisfied:

(i).
$$\langle x, x \rangle \ge 0$$
 and $\langle x, x \rangle = 0$ if and only if $x = 0$.

(ii).
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$$
.

(iii).
$$\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$$
.

(iv).
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$
.

The ordered pair $(V, \langle ., . \rangle)$ is called an inner product space.

Definition 2.2. Schwarz inequality; for $S \in B(H)$ and $x, y \in H$ then $|\langle Sx, y \rangle|^2 \le \langle Sx, x \rangle \langle Sy, y \rangle$.

Definition 2.3. Let $S: H \to H$ the adjoint of S is $S^*: H \to H$ such that: $\langle Sx, y \rangle = \langle x, S^*y \rangle, x, y \in H$.

Definition 2.4. An operator S is said to be normal if $S S^* = S^*S$ i.e. it commutes with its adjoint and S is self-adjoint if $S = S^*$.

Definition 2.5. Numerical radius r(S) is the supremum of set of scalars

 $r(S) = \sup\{|\lambda|: \lambda \in W(S)\}$ with the following properties:

$$1. r(S) = ||S||.$$

$$2. r(S^*S) = r(SS^*).$$

$$3. r(USU^*) = r(S).$$

4.
$$r(S_1 \oplus S_2 \oplus ... \oplus S_n) = max\{r(S_i): i = 1, 2, ..., n\}$$

MAIN RESULTS

4 Upper Norm Estimates

Proposition 4.1. Let S_1 , S_2 , S_3 be contractive normaloid operators where S_1 and S_2 are positive then

$$\begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \text{ is positive contractive in } B(H \otimes H) \text{ if and only if}$$
$$|\langle S_2 x, y \rangle|^2 \leq \langle S_1 x, x \rangle \langle S_3 y, y \rangle, \forall x, y \in H. \tag{1}$$

Proof. Suppose $\begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix}$ is positive contractive in $B(H \otimes H)$ then from [5], Equation (1)

i.e. $|\langle S_2 x, y \rangle|^2 \le \langle S_1 x, x \rangle \langle S_3 y, y \rangle, \forall x, y \in H$. We have

$$\left| \left\langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ y \end{bmatrix} \right\rangle \right|^2 \le \left\langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}, \begin{bmatrix} x \\ 0 \end{bmatrix} \right\rangle \left\langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix}, \begin{bmatrix} 0 \\ y \end{bmatrix} \right\rangle$$

Simplifying yields

$$\left| \left\langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ y \end{bmatrix} \right\rangle \right|^2 = \left| \left\langle S_2 x, y \right\rangle \right|^2$$
 (2)

and

$$\left\langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}, \begin{bmatrix} x \\ 0 \end{bmatrix} \right\rangle = \left\langle S_1 x, x \right\rangle \tag{3}$$

and

$$\left\langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} 0 \\ y \end{bmatrix}, \begin{bmatrix} 0 \\ y \end{bmatrix} \right\rangle = \left\langle S_3 y, y \right\rangle \tag{4}$$

Combining Equations 2, 3 and 4 yield

$$|S_2x,y|^2 \leq \langle S_1x,x\rangle \langle S_3y,y\rangle \ \forall \ x,y \in H.$$

Conversely, assume that Equation (1) holds, then $\forall x, y \in H$

$$\begin{split} \langle \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} x \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ y \end{bmatrix} \rangle &= \langle S_1 x, x \rangle + \langle S_2^* y, x \rangle + \langle S_2 x, y \rangle + \langle S_3 y, y \rangle \\ &= \langle S_1 x, x \rangle + \langle S_3 y, y \rangle + 2 Re \langle S_2 x, y \rangle \\ &\geq 2 \langle S_1 x, x \rangle^{\frac{1}{2}} \langle S_3 y, y \rangle^{\frac{1}{2}} + 2 Re \langle S_2 x, y \rangle \\ &\geq 2 |\langle S_2 x, y \rangle| - 2 |\langle S_2 x, y \rangle| \\ &\geq 0. \end{split}$$

Therefore $\begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix}$ is positive.

Theorem 4.2. Let S_1 and S_2 be contractive normaloid operators belonging to the norm ideal associated with the Hilbert Schmidt norm $\|\cdot\|_{HS}$ then

$$\left\| S_1^{\frac{1}{2}} S_2^{\frac{1}{2}} \right\|_{HS}^2 \le \left\| Re(S_1 S_2) \right\|_{HS}^{\frac{1}{2}}.$$

Proof. From [15, Lemma 1] $||S_1S_2|| \le ||Re(S_1S_2)||$.

(5)

Then it follows that using Equation 5, we have

$$\begin{aligned} \left\| S_{1}^{\frac{1}{2}} S_{2}^{\frac{1}{2}} \right\|_{HS}^{2} &= \left\| \left(S_{1}^{\frac{1}{2}} S_{2}^{\frac{1}{2}} \right)^{*} \left(S_{1}^{\frac{1}{2}} S_{2}^{\frac{1}{2}} \right) \right\|_{HS} \\ &= \left\| S_{1}^{\frac{1}{2}} S_{1} S_{2}^{\frac{1}{2}} \right\|_{HS} \\ &\leq \left\| Re(S_{1} S_{2}) \right\|_{HS}^{\frac{1}{2}} \end{aligned}$$

Corollary 4.3. Let $S_1, ..., S_n$ for all $n \in \mathbb{N}$ be positive contractive normaloid operators belonging to the norm ideal associated norm $\|\cdot\|_{HS}$ then

$$\left\| \sum_{i=1}^{n} S_{i}^{\frac{1}{2}} \right\|_{HS}^{2} \leq \sum_{i,j}^{n} \left\| S_{i}^{\frac{1}{2}} S_{j}^{\frac{1}{2}} \right\|_{HS}.$$

Proof. From Theorem 2, it follows that

$$\begin{split} \left\| \sum_{i=1}^{n} S_{i}^{\frac{1}{2}} \right\|_{HS}^{2} &= \left\| \sum_{i=1}^{n} \left(S_{1}^{\frac{1}{2}} S_{2}^{\frac{1}{2}} \dots S_{n}^{\frac{1}{2}} \right)^{*} \left(S_{1}^{\frac{1}{2}} S_{2}^{\frac{1}{2}} \dots S_{n}^{\frac{1}{2}} \right) \right\|_{HS} \\ &= \left\| \left| \sum_{i,j}^{n} S_{i}^{\frac{1}{2}} S_{j}^{\frac{1}{2}} \right\|_{HS} \end{split}$$

$$\leq \sum_{i=1}^n \left\| S_i^{\frac{1}{2}} S_j^{\frac{1}{2}} \right\|_{HS}.$$

Theorem 4.4. Let S_1 , S_2 be contractive normaloid operators on a Hilbert space then $||S_1S_2 - S_2S_1|| \le ||S_1|| ||S_2||$.

Proof. Suppose S_1 is positive and S_1 is self-adjoint. From [6, Theorem 2.9],

$$r(S_1S_2 - S_2S_1) \le \frac{1}{2} \|S_1\| \left(\|S_2\| + \|S_2^2\|^{\frac{1}{2}} \right)$$
 since $r(S) = \|S\|$ by [1, Theorem 5]. This implies that $\|S_1S_2 - S_2S_1\| \le \frac{1}{2} \|S_1\| \left(\|S_2\| + \|S_2^2\|^{\frac{1}{2}} \right)$

Since $S_1, S_2 \in B(H)$ such that S_2 is a projection from [6, Theorem 2.8] then

$$||S_1 S_2 - S_2 S_1|| \le \frac{1}{2} \left(||S_1|| + ||S_1^2||^{\frac{1}{2}} \right)$$
(6)

If $A = \sqrt{S_1 - S_1^2}$, the operator $E = \begin{bmatrix} S_1 & A \\ A & I - S_1 \end{bmatrix}$ is a projection on $H \oplus H$, since $S_1 \sqrt{S_1 - S_1^2} S_1$. If

$$B = \begin{bmatrix} S_2 & 0 \\ 0 & 0 \end{bmatrix}$$
, then $EB - BE = \begin{bmatrix} S_1 S_2 - S_2 S_1 & -S_2 A \\ AS_2 & 0 \end{bmatrix}$. By Equation 6, we have

$$||EB - BE|| \le \frac{1}{2} (||B|| + ||B^2||^{\frac{1}{2}}).$$

Now let $C = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$, where I is the identity operator. Then $\begin{bmatrix} S_1 S_2 - S_2 S_1 & 0 \\ 0 & 0 \end{bmatrix} = C(EB - BE)C^*$ if we let $S_1 E \in B(H)$ such that E is a projection, then

$$||S_1B - BS_1|| \le \frac{1}{2} (||S_1|| + ||S_1^2||^{\frac{1}{2}})$$
 by Equation 6 (7)

So

$$\begin{aligned} \left\| \begin{bmatrix} S_1 S_2 - S_2 S_1 & 0 \\ 0 & 0 \end{bmatrix} \right\| &= \|EB - BE\| \text{ by property (iii) of Definition 2.5} \\ &\leq \frac{1}{2} \left(\|B\| + \|B^2\|^{\frac{1}{2}} \right) \text{ by Equation 7} \\ &= \frac{1}{2} \left(\|S_2\| + \|S_2^2\|^{\frac{1}{2}} \right) \text{ by Equation 6} \end{aligned}$$

hence

$$||S_1 S_2 - S_2 S_1|| \le \frac{1}{2} \left(||S_2|| + ||S_2^2||^{\frac{1}{2}} \right)$$
(8)

Since S_1 is positive, then it follows from Equation 7 that

$$\left\| \frac{S_1}{\|S_1\|} S_2 - S_2 \frac{S_1}{\|S_1\|} \right\| \le \frac{1}{2} \left(\|S_2\| + \|S_2^2\|^{\frac{1}{2}} \right).$$

Then

$$\begin{split} \|S_1 S_2 - S_2 S_1\| & \leq \frac{1}{2} \, \|S_1\| \left(\|S_2\| + \|S_2^2\|^{\frac{1}{2}} \right) \\ & \leq \|S_1\| \, \|S_2\|. \end{split}$$

Theorem 4.4. Let $S_1, S_2 \in B(H)$ be contractive normaloid operators. Then

$$\left\|\frac{S_1+S_2}{2}\right\|^2 \leq \frac{\|S_1S_1^*+S_2S_2^*\|}{2} + r(S_2^*S_1).$$

Proof. Since

$$||S_1x + S_2x||^2 = ||S_1x||^2 + ||S_2x||^2 + 2Re\langle S_1x, S_2x \rangle$$

$$\leq \langle (S_1S_1^* + S_2S_2^*)x, x \rangle + 2|\langle (S_2^*S_1)x, x \rangle|, \forall \ x \in H.$$

Taking the supremum over $x \in H$, ||x|| = 1, we obtain

$$\begin{split} \|S_1 + S_2\|^2 & \leq r(S_1 S_1^* + S_2 S_2^*) + 2r(S_2^* S_1) \\ & = \|S_1 S_1^* + S_2 S_2^*\| + 2r(S_2^* S_1) \end{split}$$

Therefore

$$\left\|\frac{S_1+S_2}{2}\right\|^2 \leq \frac{\|S_1S_1^*+S_2S_2^*\|}{2} + r(S_2^*S_1).$$

5 Lower Norm Estimates

Lemma 5.1. Let ψ and ϕ be non-negative continuous functions on $[0,\infty)$ satisfying $\varphi(z)$ $\varphi(z) = z \ \forall \ z \in [0,\infty)$. Let S_1, S_2 and S_3 be as in Proposition 4.1 and $S_1S_2 = S_2S_3$. Then

$$\begin{aligned} & \left\| \begin{bmatrix} \varphi(S_1)^2 & S_2^* \\ S_2 & \varphi(S_3)^2 \end{bmatrix} \right\| \text{ is also positive and } \\ & \left\| \begin{bmatrix} \varphi(S_1)^2 & S_2^* \\ S_2 & \varphi(S_3)^2 \end{bmatrix} \right\| \ge \| \varphi(S_1)^2 \| \| \varphi(S_3)^2 \| + \| S_2 \|^2. \end{aligned}$$

Proof. Suppose S_1 and S_3 are both invertible. Since $S_1S_2 = S_2S_3$, for any function that is continuous on $[0,\infty)$, then $k(S_3)S_2 = S_2k(S_1)$. But $\varphi(z) \varphi(z) = z$ for $z \in [0,\infty)$, then $\varphi(S) \varphi(S) = S$ for any positive operator

 $S \in B(H)$. The two facts imply that $\varphi(S_3)S_3^{-\frac{1}{2}}S_2\varphi(S_1)S_1^{-\frac{1}{2}}=S_2$. Consequently,

$$\begin{bmatrix} \varphi(S_1)^2 & S_2^* \\ S_2 & \varphi(S_3)^2 \end{bmatrix} = \begin{bmatrix} \varphi(S_1)^2 S_1^{-\frac{1}{2}} & 0 \\ 0 & \varphi(S_3) S_3^{-\frac{1}{2}} \end{bmatrix} \begin{bmatrix} S_1 & S_2^* \\ S_2 & S_3 \end{bmatrix} \begin{bmatrix} \varphi(S_1) S_1^{-\frac{1}{2}} & 0 \\ 0 & \varphi(S_3) S_3^{-\frac{1}{2}} \end{bmatrix}.$$

Invoking Proposition 4.1 completes the proof.

Theorem 5.2. Let $S \in B(H)$ be positive contracting operators. If $\alpha \in \mathbb{C} \setminus \{0\}$ and m > 0 are such that $||S - \alpha S^*|| < m$ then

$$||Sx||^2 > \frac{|\alpha|^2}{m^2} (||Sx||^4 - |\langle S^2x, x \rangle|^2).$$

Proof. Assume without loss of generality that S is normal. We employ the reverse of quadratic Schwarz inequality in [1] i.e.

$$0 \le ||a||^2 ||b^2|| - |\langle a, b \rangle|^2 \le \frac{1}{|a|^2} ||a||^2 ||a - \alpha b||^2$$

For every $a, b \in H$ and $\alpha \in \mathbb{C} \setminus \{0\}$ let $a = Sx, b = S^*x$ we get

$$||Sx||^2 ||S^*||^2 - |\langle Sx, S^*x \rangle|^2 \le \frac{1}{|a|^2} ||Sx||^2 ||Sx - \alpha S^*||^2$$

$$||Sx||^4 - |S^2x, x|^2 - \frac{m^2}{|a|^2} ||Sx||^2$$

$$||Sx||^2 > \frac{|a|^2}{m^2} (||Sx||^4 - ||Sx||^4).$$

Lemma 5.3. Let $S_1, S_2 \in B(H)$ be positive contractive operators. If n > 0 and

$$||S_1 - S_2|| \le n$$
. Then

$$r(S_2^*S_1) \ge \frac{1}{2} [\|S_1S_1^* + S_2S_2^*\| - n^2]. \tag{9}$$

Proof. Without loss of generality assume that $S_1S_1^* + S_2S_2^*$ is self adjoint.

For any $x \in H$, ||x|| = 1 and from $||S_1 - S_2|| \le n$ we have

$$||S_1x - S_2x|| \le n = |\langle S_1x - S_2x, S_1x - S_2x \rangle| \le n^2.$$

$$= \|S_1 x\|^2 + \|S_2 x\|^2 - 2Re\langle S_1 x, S_2 x \rangle \le n^2.$$

Thus

$$||S_1 x||^2 + ||S_2 x||^2 \le 2Re\langle S_1 x, S_2 x \rangle + n^2 \tag{10}$$

But

$$||S_1x||^2 + ||S_2x||^2 = \langle (S_1^*S_1)x, x \rangle + \langle (S_2^*S_2)x, x \rangle$$

= \langle (S_1^*S_1 + S_2^*S_2)x, x \rangle.

Using Equation 10 we obtain

$$\langle (S_1 S_1^* + S_2^* S_2) x, x \rangle \le 2 |\langle (S_2^* S_1) x, x \rangle| + n^2$$
(11)

Taking the supremum over $x \in H$, ||x|| = 1 in (11) we get

$$r(S_1^*S_1) \le 2r(S_2^*S_1) + n^2 \tag{12}$$

Since the operator $S_1S_1^* + S_2S_2^*$ is self-adjoint, hence

$$r(S_1S_1^* + S_2S_2^*) = ||S_1S_1^* + S_2S_2^*||.$$

Therefore Equation 12 becomes

$$r(S_2^*S_1) \ge \frac{1}{2} [\|S_1S_1^* + S_2S_2^*\| - n^2].$$

Corollary 5.4. Let S_1 , S_2 be positive contractive operators on Hilbert space then

$$\begin{split} \|S_1 \otimes S_2 + S_2 \otimes S_1\| &\geq 2 \|S_1\| \|S_2\| \\ Proof. \\ \|S_1 \otimes S_2 + S_2 \otimes S_1\|^2 &= \langle S_1 \otimes S_2 + S_2 \otimes S_1, S_1 \otimes S_2 + S_2 \otimes S_1 \rangle \\ &= \langle S_1 \otimes S_2, S_1 \otimes S_2 \rangle + \langle S_1 \otimes S_2, S_2 \otimes S_1 \rangle + \\ & \langle S_2 \otimes S_1, S_1 \otimes S_2 \rangle + \langle S_2 \otimes S_1, S_2 \otimes S_1 \rangle + \\ & \langle S_2 \otimes S_1, S_1 \otimes S_2 \rangle + \langle S_2 \otimes S_1, S_2 \otimes S_1 \rangle + \\ & \langle S_2, S_1 \rangle \langle S_2, S_2 \rangle + \langle S_1, S_2 \rangle \langle S_2, S_1 \rangle + \\ & \langle S_2, S_1 \rangle \langle S_1, S_2 \rangle + \langle S_2, S_2 \rangle \langle S_1, S_1 \rangle \\ &= \|S_1\|^2 \|S_2\|^2 + \|S_2\|^2 \|S_1\|^2 + 2Re \langle S_1, S_2 \rangle \\ \text{So by Cauchy-Schwarz inequality} \\ & \|S_1 \otimes S_2 + S_2 \otimes S_1\|^2 \leq \|S_1\|^2 \|S_2\|^2 + \|S_2\|^2 \|S_1\|^2 + 2\|S_1\| \|S_2\| \\ &= (\|S_1\| \|S_2\| + \|S_2\| \|S_1\|)^2 \\ \text{i.e} \\ & \|S_1 \otimes S_2 + S_2 \otimes S_1\|^2 \leq (\|S_1\| \|S_2\| + \|S_2\| \|S_1\|)^2 \\ \text{Taking square roots on both sides we obtain} \\ & \|S_1 \otimes S_2 + S_2 \otimes S_1\| \leq \|S_1\| \|S_2\| + \|S_2\| \|S_1\| \\ &\leq 2\|S_1\| \|S_2\| \\ &\leq 2\|S_1\| \|S_2\| \end{split}$$

But $||S_1 \otimes S_2|| = ||S_1|| ||S_2||$. Since $||S_1 \otimes S_2 + S_2 \otimes S_1|| \ge 0$, this implies that

REFERENCES

 $||S_1 \otimes S_2 + S_2 \otimes S_1|| \ge 2||S_1|| ||S_2||.$

- [1] **Dragomir S.S.**, Reverse inequalities for the numerical radius of linear operators in Hilbert space, *Bull. Austral, math. soc*, Vol.73, (2006), 255-262.
- [2] **Dragomir S.S.**, A survey of some recent inequalities for the normal and numerical radius of operator in Hilbert space, *Banach j. math. Analysis*, Vol.1, no.2, (2007), 154-175.
- [3] **Kittaneh F**., Norms inequalities for certain operator sums, j. *Functional Analysis*, Vol.143, (1997), 337-348.
- [4] **Kittaneh F.**, Numerical radius inequality and an estimate for numerical radius of the Frobenius companion matrix, *Studia math.*, Vol.158, no.1, (2003), 11-17.
- [5] **Kittaneh F.**, Notes on some inequalities for Hilbert space operators, *publ. RIMS Kyoto Univ*, no.24, (1988), 283-293.
- [6] **Omidvar M. E., Moslehian M.S., Niknam A.**, Some numerical radius inequalities for Hilbert space operators, *Involve 2.4*, (2009), 471-478.