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Abstract: In this paper we establish new conditions for contractivity of normaloid operators. We employ some results for 

contractivity due to Furuta, Nakomoto, Arandelovic and Dragomir. A particular generalization is also given. 
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1. INTRODUCTION 

An interesting area in operator theory is the study of norm inequalities for Hilbert space operators. Many 

mathematicians have worked on this subject, for example in [2, 3 and 5]. On the other hand, contractive 

and normaloid operators have been considered separately by [1, 6, 7 and 8]. In this paper, we results on 

conditions for normaloidity and contractivity of Hilbert space operators. We begin by simple lemmas 

before we move to main results. Let  be a complex Hilbert space with an inner product and   

the algebra of all bounded linear operators on . denotes the usual operator norm and Dom( ) 

denotes the domain of . 

 

2. BASIC CONCEPTS AND PRELIMINARIES 

In this section, we start by defining some key terms that are useful in the sequel. 

 

Definition  2.1.  An operator    is said to be normaloid if 

sup {| |: 1} and contractive if   1. 

 

Definition  2.2.  Let  :    the adjoint of  is S*:    such that  

     ,   . 

 

Definition 2.3.  An operator  is said to be normal if  and is a self-adjoint if    . 

 

3. Main results  
In this section we give the main results. We first discuss conditions for normaloidity and lastly we 

consider conditions for contractivity. 

 
Lemma  3.1. Let   . Then  is normaloid if it is self-adjoint. 
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Proof. Since   , then without loss of generality we assume that S is normal i.e. . 

Hence,  is normaloid if  sup {| |: 1}. But  is self-adjoint i.e. . So  

 sup {| |: 1}, and this completes the proof. 

 

Lemma  3.2. Let     then  is normaloid if it is normal. 

 

Proof. Suppose   is normal i.e.  then     

 , 

   . But the subspace is a core of both  

and , therefore the norm of  and norm of  coincide with 

 . Hence it follows that,  and 

     . By Lemma 3.1,  is self-adjoint  so   

 

Lemma  3.3. Let     then  is normaloid if it is positive. 

 

Proof. From Lemma 3.1, every positive operator is self-adjoint. This implies that;  

 .       . But   

  and   . So subtracting gives  

       0. This implies that   

. By Lemma 3.2. We have  ≥ 0.    , since    . But  

 , hence either  0 or   0 or both are  0. Clearly, is positive. 

 

Theorem  3.4. Let and  in   be normaloid then  is normaloid. 

 

Proof. From Lemmas 3.1, 3.2 and Lemma 3.3 if we suppose that  is densely defined then let 

 , such that contains   Then we can find  

contains . From Lemma 3.1 we have, 

           . Hence, 

ǁ ǁ  sup {|   ǀ: ǁ ǁ  1 and ǁ ǁ  1}     

                     sup {| ǀ: ǁ ǁ  1 and ǁ ǁ  1} 

Therefore, is normaloid.  

 

Corollary 3.5. Let , ,...,  in   be normaloid. Then   is normaloid in   

Proof. From Theorem 3.4 it follows that 

 

                ǁ  ǁ  ǁ  ǁ 

 

                                                        

Let   Dom ( ), such that  ...  contains . Then we can 

find   , such that  ...  contains . Hence, 

from Theorem 3.4 we have 

 ǁ ǁ  sup {ǀ  

                                                  ǀ: ǁ ǁ 1 and ǁ ǁ 1} 

                                         sup  



N. B. Okelo et al, Journal of Global Research in Mathematical Archives, 01-06 

 

© JGRMA 2017, All Rights Reserved    3 

 

 
                                                  : ǁ ǁ 1 and ǁ ǁ 1}  

Therefore     is normaloid.   

                                                                 

Theorem 3.6. Let ,  be normaloid then  is normaloid and  

 max  max {ǁ ǁ, ǁ ǁ}.                                              (1) 

 

Proof. Since ,  are normaloid we have  

          ǁ  ǁ  max . 

So  

ǁ   ǁ  ǁ (  )  – (  – )ǁ 

                        ≤ 2 ǁ  ǁ ǁ ǁ                                                                                         (2) 

Similarly,                                                                                                                                

 ≤ 2                                                                                       (3) 

But   is normaloid. So using Equation 2 and Equation 3 we have 

ǁ  ǁ ≤ 2 max {ǁ ǁ, ǁ ǁ} ǁ  ǁ                                                                 (4) 

In Equation 4 replacing  by , we get 

ǁ  ǁ ≤ 2 max  ǁ  ǁ                                                                (5) 

From Equation 4 and Equation 5 we obtain the required result i.e. 

 max  max {ǁ ǁ, ǁ ǁ}. 

 

Corollary 3.7. Let  be normaloid then 

ǁ  – S*S ǁ ≤ 2ǁ  ǁ max {ǁ    ǁ, ǁ   ǁ}                                                            (6) 

   

Proof. From Equation 4 and Equation 5. Let  and .This gives 

 ǁ  – S*S ǁ  2max{ǁ  ǁ,  } ǁ   ǁ                                                         (7*) 

and                                                           

ǁ  – S*S ǁ  2max{ǁ  ǁ,  } ǁ   ǁ                                                       (7**) 

From Equation 7* and 7** we obtain 

ǁ  – S*S ǁ  2ǁ  ǁ max {ǁ    ǁ, ǁ   ǁ}. 

The proof is complete. 

Lemma 3.8. Let   i   ⊗    and    j   ⊗   and   be an 

inner product on ( ⊗ ). Then it is well defined. 

Proof. Suppose   0 when   0 in  ( , ) and   0 when   0. For each 

  and     then  

              (8) 

For each     and    

Let   i   ⊗  and j ϵ ⊗  

    (xj yj) 

                                                                 (9) 

From Equation 8 and Equation 9 we obtain 

0 ( )  



N. B. Okelo et al, Journal of Global Research in Mathematical Archives, 01-06 

 

© JGRMA 2017, All Rights Reserved    4 

 

Similarly,   0 when   0. Therefore   is well defined. But,  is a Hermitian   

sesquilinear form then   ≥ 0. Choosing orthonormal basis   for the linear span of 

  and  of  and by the bilinearity rules of elementary tensors, we get 

     ⊗                                                                                                                 (10) 

Inserting Equation 10 into Equation 9, we get 

   

              0. 

Thus  is positive. Since then, . =0    and so   Therefore 

 is well defined. 

Lemma 3.9. Let , ⊗ ) then ⊗  is a well defined operator on 

 ⊗ )  with domain .  

Proof. Let  = i,       ,   . Given an orthonormal basis 

 for the linear span of  and set  then  

                                                                                 (11) 

                                                                     (12) 

From Lemma 3.8, to proof that ⊗  is well defined, then  0 whenever  

If , then all  are zero by Equation 12. Therefore  

      0. 

Theorem 3.10. Let  and  be normaloid then ⊗  is normaloid under  and   

 . 

Proof. Let    as in Equation 11. Suppose  and . 

Using Equation 12 twice, i.e. for the element ( )   and then for we get 

       . 

mplies that  . Similarly,   therefore 

 =                          (13) 

To prove the reverse inequality we let  and the unit vectors    and 

    Such that   and   Then 

 =  

                                             

So,                                                                                                  (14) 

Since  is arbitrary so small, now letting , thus from Equation 13 and 14, we get  

  .  

 

    

 

 Let   be normaloid positive then is contractive. 

 Take  as in Lemma 3.2 and from [3 Theorem 1.2],  .  is contractive if  1. 

Since  = sup  from [4] Theorem A, an indempotent 

numerical radius contraction is a projection. It follows that the idempotency of  that 

     

where  is an arbitrary complex number. Let , where  is a real number. Then 

  as   we get   
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 Let be normaloid then  is contractive if and only if it is the identity. 

 Suppose is a contractive i.e.  then    for all   and the geometric 

series  is convergent. It therefore follows that the infinite series  

 converges to some . Hence; 

 

 Therefore,  since  as . Similarly, 

 this shows that  is invertible and therefore  is an identity. Conversely, 

assume that  is an identity. Let  and  be normaloid and 

 ,  with  and also invertible and :  and :   such that  

and . Then the equality      implies that   and  . 

Similarly,      implies    and  . This implies that  and  are 

both invertible and  . Thus  and therefore  is contractive. 

 Let  and  be normaloid then  is also contractive. 

 Since  and  are normaloid, then   is also normaloid. Now 

 sup  

               sup  

 is equivalent to  . Then 

  sup  

                sup  

  the supremum   therefore  is contractive. 

Corollary 4.4. Let  and  be normaloid contractive, then the following are equivalent; 

i.  is contractive. 

ii.  is positive. 

iii.  is positive. 

iv.  is normal. 

Proof.  From Theorem 4.3, it follows that is also normaloid contractive. Let  and 

 be normaloid positive operators, then  is positive. 

 Suppose is positive. Since  and  are positive, it follows that their product is 

positive. Hence   is positive since multiplication is defined point wise and commutative. 

 An operator is said to be positive if it is self adjoint i.e. . This implies that  is 

positive and hence   is also positive. Therefore,   this implies that   thus 

 is normal and therefore   is also normal. 

 From 4.3, let  and  this implies that  

 Let  be normaloid then  is contractive bounded linear operatorif for each 

 and any  there exist a positive integer  such that  for all   . 

 By the prove of [1 Theorem 3.5], let  

. Then it implies that;  

∘ For each  since 

 for each  then, ∘  Therefore,  

given  , there exist a positive integer  such that  , implying that;  

Since ;  being a convergent sequence, then  implies that;   

CONCLUSION 
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These results are properties of Hilbert space operators are when they are normaloid and contractive. It 

would be interesting to give generalizations which thus will help in further classification of these 

operators.  
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