

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE 2nd YEAR 1ST SEMESTER 2022/2023 ACADEMIC YEAR

MAIN

COURSE CODE: WMB 9205

COURSE TITLE: VECTOR ANALYSIS

EXAM VENUE:

STREAM: (BSc./ BEd)

DATE: 20/12/2022

EXAM SESSION: 15.00-17.00PM

TIME: 2.00 HOURS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION 1 (30marks) COMPULSORY

- a) Evaluate each of the following:
 - (i) $2j \times (3j 4k)$ (4mks)
 - (ii) $(i+2j) \times k$ (3mks)
- b) Find the area of the triangle with vertices at (3,-1,2), (1,-1,-3) and (4,-3,1)(6mks)
- c) If $A = x^2 yz \ i 2xz^3 \ j + xz^2 k$ and $B = 2z \ i + yj x^2 k$, find $\frac{\partial^2}{\partial x \ \partial y} (A \times B) at (1,0,-2)$ (6mks)
- d) If $\nabla \phi = 2xyz^3 i + x^2z^3 j + 3x^2yz^2 k$, find $\phi(x, y, z)$ if $\phi(1, -2, 2) = 4$. (5mks)
- e) If A= $3xyz^2$ $i + 2xy^3 j x^2yz$ k and $\emptyset = 3x^2 yz$, find $\nabla \cdot A(6mks)$
- f) If $F = 5xy 6x^2$ i + (2y 4x)j, evaluate $\int_C F \cdot dr$ along the curve C in the xy plane, $y = x^3$ from the point (1,1)to (2,8). (7mks)

QUESTION 2 (20marks)

- (a) Given the vectors $\underline{u} = 3i 2j + k$, $\underline{v} = 2i 4j 3k$, $\underline{w} = -i + 2j + 2k$, find
- (i) $\left| 7\underline{u} \right|$ (ii) $\left| -2\underline{u} + 8\underline{v} \underline{w} \right|$ (7mks)
- (b) If $\phi = 3x^2z y^2z^3 + 4x^3y + 2x 3y 5$, find $\nabla^2 \phi$ (5mks)

(c) Show that the vector $y = \frac{5}{(x^2 + y^2)} (-yi + xj)$ is i) incompressible ii) irrotational (6mks)

QUESTION 3 (20marks)

a)Given the vectors $\underline{\alpha} = 5ti + tj - tk$, $\underline{\beta} = \sin ti - \cos tj + 2k$, prove that $(\underline{\alpha} \times \underline{\beta}) = -(\underline{\beta} \times \underline{\alpha})$. [5 marks]

b)For the vectors $\underline{\alpha} = 5t^2 i + t j - t^3 k$, $\underline{\beta} = e^{2t} i - \cos t j + 8k$, compute $\frac{d(\underline{\alpha} \times \underline{\beta})}{dt}$ [5 marks]

c)Find all the turning points for function $\Phi(x, y, z) = 8x^2 + 24y^2 + 16z^2 + 24x + 16z + 1$ (10Amks)

QUESTION 4(20marks)

(a) If a vector field $\mathcal{E}(x, y, z)$ is conservative then show that the work integral $\int_C \mathcal{E} \bullet d\mathbf{r}$ between points A and B is independent of the path c chosen between the two points. (5mks)

(b) Given $\phi(x, y, z) = xy^2 z$, $\underline{a} = xz i - xy^2 j + yz^2 k$, show that $\frac{\partial^4}{\partial y \partial x^2 \partial z} [\phi \underline{a}]|_{(0,1,1)} = 8i - 8j$ (8mks)

(c) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$ where t is the time. Find its velocity and acceleration at time t = 0 (7mks)

QUESTION 5(20marks)

a)State and prove the Green's Theorem.

(7 mks)

b)A curve $\frac{x^2}{4} + \frac{y^2}{9} = 1$, is parametrically defined by the vector equation,

 $\mathbf{r}(t) = 2 \cos t \mathbf{i} + 3 \sin t \mathbf{j}$

UsingGreen's theorem show that the area enclosed by this curve is 6π (13 mks)