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2 | P a g e   QUESTION 1 (30marks) COMPULSORY a) Evaluate each of the following:  (i) 2� × �3� − 4�	 (4mks)  (ii) �
 + 2�	 × �                                                (3mks)   b) Find the area of the triangle with vertices at (3,-1,2), (1,-1,-3) and (4,-3,1)(6mks)  c) � � = ����  
 − 2���  � + ���� and � = 2� 
 + �� − ���, �
�� ����  �� �� × �	�� �1,0, −2	(6mks)  d) If ∇∅ = 2����  
 + ���� � + 3�����  �, find ∅��, �, �	  
� ∅�1, −2,2	 = 4. (5mks)  e) If A= 3����  
 + 2��� � − ����  �  ��� ∅ = 3�� − ��, �
�� ∇ ∙ �(6mks)  f) If  F= 5�� − 6��	 
 + �2� − 4�	�, ()�*+��( , - ∙ �. �*/�0 �ℎ( 2+.)( 3 
� �ℎ( �� 4*��(, � =5��  �./6 �ℎ( 4/
�� �1,1	�/ �2,8	. (7mks)  QUESTION 2 (20marks)  (a) Given the vectors 3 2 , 2 4 3 , 2 2u i j k v i j k w i j k= − + = − − = − + + , find  (i) 7u ,(ii) 2 8u v w− + −       (7mks) (b) If ∅ = 3��� − ���� + 4��� + 2� − 3� − 5, �
�� ∇�∅   (5mks)  (c) Show that the vector  
( ) ( )2 25

v yi xj
x y

= − +
+% % %

 is  i) incompressible ii) irrotational   (6mks) QUESTION 3 (20marks)  a)Given the vectors 5 , sin cos 2t i t j t k t i t j kα β= + − = − + , prove that ( ) ( )α β β α× = − ×  . [5 marks] b)For the vectors 2 3 25 , cos 8tt i t j t k e i t j kα β= + − = − + , compute ( )d

dt

α β×  [5 marks]  c)Find all the turning points for functi0n ( ) 2 2 2, , 8 24 16 24 16 1x y z x y z x zΦ = + + + + + (10Amks)  QUESTION 4(20marks)  (a) If a vector field ( ), ,F x y z
%

 is conservative then show that the work integral  
C
F dr•∫
% %

 between points A and B is independent of the path C  chosen between the two points.  (5mks)  (b ) Given ( ) 2 2 2, , ,x y z xy z a xz i xy j yz kφ = = − + , show that [ ] ( )

4 0,1, 12 8 8a i j
y x z

φ
∂

= −
∂ ∂ ∂

(8mks)  



3 | P a g e   (c) A particle moves along a curve whose parametric equations are  , 2cos3 , 2sin 3tx e y t z t−= = =  where t  is the time. Find its velocity and acceleration at time 0t =    (7mks)  QUESTION 5(20marks)  a )State and prove the Green's Theorem.      (7 mks) b)A curve   2 2 14 9x y
+ = , is parametrically defined by the vector  equation,   r(t)  =  2 cos t i + 3 sin t j UsingGreen’s theorem show that the area enclosed by this curve is  6π  (13 mks)   


