

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND

TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE/BACHELOR OF SCIENCE(ACTUARIAL SCIENCE WITH IT) 4TH YEAR 1STSEMESTER 2022/2023 ACADEMIC YEAR

MAIN CAMPUS

STREAM:

COURSE CODE: WMB 9401 COURSE TITLE: PARTIAL DIFFERENTIAL EQUATIONS I

EXAM VENUE: AH

DATE: 6/12/2022

EXAM SESSION: 9.00-11.00AM

TIME: 2.00 HOURS

INSTRUCTIONS:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)

a) State the order and degree of the partial differential equations below

i)
$$\frac{\partial^4 y}{\partial x^4} + \left(\frac{\partial y}{\partial x}\right)^5 + \left(\frac{\partial^4 z}{\partial x^4}\right)^2 = 0$$

ii)
$$\left(\frac{\partial y}{\partial x}\right)^4 + \frac{\partial^2 z}{\partial x^2} + \left(\frac{\partial z}{\partial x}\right)^3 = 0$$
 (4 marks)

- b) Give a general form of each of the following equations hence state the difference between them
- i) Semi-Linear partial differential Equation
- ii) Quasi-linear partial differential equation (6 marks)
- c) Solve the simultaneous Differential equation

$$\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{zxy - 2x^2}$$
(6 marks)

d) Determine f(x, y) given the following differential equations

i)
$$df(x, y) = \frac{xdy + ydx}{xy}$$

ii)
$$df(x, y) = zdx + xdz + y^2dy$$
 (4 marks)

e) Find the orthogonal trajectory on the concoid (x + y)z = 1 of its intersection with the family of planes x - y + z = k where k is a parameter

(8 marks)

f) State the necessary condition for the Differential equations f(x, y, z, p, q)and g(x, y, z, p, q) s to be compatible (2 marks)

QUESTION TWO (20 marks)

- a) Show that the equation $p^2 + q^2 = 1$ and $(p^2 + q^2)x = pz$ are compatible hence find their solution. (8 marks)
- b) Solve the Pfaffian differential equation $(z^2 + 2xy)dx + (x^2 + 2yz)dy + (y^2 + 2xz)dz = 0$ (6 marks)
- c) Form a partial differential equation by eliminating the arbitrary function f from the function $x + y + z = f(x^2 + y^2 + z^2)$ (6 marks)

QUESTION THREE (20 marks)

- a) By use of an appropriate auxiliary equation solve the equation $(y^2 + yz + z^2)dx + (z^2 + xz + x^2)dy + (x^2 + xy + y^2)dz = 0$ (6 marks)
- b) Find f(y) such that the Pfaffian differential equation $(y^2 + z^2 - x^2)dx + 2xf(y)dy - 2xzdz = 0$ is integrable hence solve it.

(8 marks)

c) Use Lagrange's method to solve $z(z^2 + xy)(px - qy) = x^4$

(6 marks)

QUESTION FOUR (20 marks)

- a) By eliminating the arbitrary constants *a* and *b* from $2z = (ax y)^2 + b$ form a partial differential equation (4 marks)
- b) Solve the homogeneous equation using the substituition x = uz and y = vz2(y+z)dx - (x+y)dy + (2y-x+z)dz = 0 (10 marks)
- c) By choosing appropriate multipliers where necessary solve $\frac{dx}{x(y^2+z)} = \frac{dy}{-y(x^2+z)} = \frac{dz}{z(x^2-y^2)}$ (6 marks)

QUESTION FIVE (20 marks)

- a) Solve the Cauchy's problem for zp + q = 1 where the initial data curve is $x_0 = \mu, y_0 = \mu, z_0 = \frac{\mu}{2}$ for $0 \le \mu \le 1$ (8 marks)
- b) Use Charpit's method to find the complete integral of px + qy = pq

(6 marks)

c) By taking one variable to be a constant solve the total differential equation $(2x^2 + 2xy + 2xz^2 + 1)dx + dy + 2zdz = 0$ (6 marks)