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2 | P a g e   QUESTION ONE (30 marks)Complulsory a) Define the following terms: i) A metric space as used in topology.     (3mks) ii) Neighbourhood         (2mks)  b) Determine the neighbourhood�(6,2)  defined on  i) The usual metric space.       (2mks)     ii) thediscrete metric space.  (3mks)     c) Let � = {1,2,3} and  = {∅, {1}, {2}, {1,3}, {2,3}, �}.Determine whether  is a topology on � or not.        (5mks) d) Let � = {1,2,3} and  = {∅, {1}, {3}, {1,3}, {2,3}, �}.If � = {1,2}. Find  i) Int(�).          (4mks) ii) Limit points of �.      (3mks)  e) Given that � = {1,2,3,4,5} and  = {∅, {1}, {3}, {1,3}, {3,4}, {1,3,4}, �}. If  � = {1,2,4}, find the subspace topology � on �.   (3mks)    f) Let (�, �) be a metric space. Show that the whole space � is both open and closed.            (5mks)            QUESTION TWO (20 marks) a) Let � = ℝ. Define a metric �: ℝ × ℝ ⇢ ℝby �(�, �) = |� − �|, ∀ �, � ∈ ℝ. Show that � is indeed a metric on ℝ.      (10mks)  b) In (ℝ, �) , where �is the usual metric on ℝ, a subset �of ℝ is given by � = (1,3! ∪(5,7) ∪ {9}. Find  i) �interior.         (4mks) ii) �exterior.        (4mks) iii) The boundary of �.      (2mks)    QUESTION THREE (20 marks)  a) If (�, �) is a metric space and � = {�%: & ∈ ') is arbitrary family of open sets. Then show that ∪ �%: & ∈ ' is open in �.     (5mks)     b) Show that finite intersection of open sets is open     (5mks) 



3 | P a g e   c) Show that arbitrary intersection of open sets need not be open (5mks) d) Consider B={a,b,c,d}. Is B ={{a,b},{b,c,d}} a base for any topology on B?                   Explain.        (5mks)                                                                       QUESTION FOUR (20 marks) a) Let � be a non empty set and Let � ⊆ �. Let  = {): � ⊆ )}.Determine whether  is a topology on � or not.        (8mks) b) Given that  * = {�, �, +}, , = {∅, {�}, {+}, {�, +}, {�, +), *} and  - = {∅, {�}, {�, �}, {�, +), *}.  Determine whether, ∪ - and , ∩ - are topologies on * or not.         (12mks)           QUESTION FIVE (20 marks) a) Define the term continuity as used in topological spaces. b) Let  � = {1,2,3.4}, * = {5,6,7,8}, 0 = {∅, {1}, {2}, {1,2}, {1,2,4), �}and 1 = {∅, {5}, {7}, {5,7}, {5,6,8), *}.  Let 2: � → * be defined as 2(1) = 5, 2(2) =7, 2(3) = 8 and 2(4) = 6. Determine whether 2 is continuous or not.(8mks)  c) Let (�, �) be a metric space. Show that finite union of closed sets in � is also closed.         (6mks) d) Describe the --axiom and hence define a Haussdorff space.  (3mks) e) Show that the discretetopological space is a -- space.  (3mks)            


