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  QUESTION ONE (30 MARKS) a)  Define the following terms as used in Linear Algebra i) Linearly Independent Vectors                                                           (1mark) ii) Linearly Dependent Vectors                                                             (1mark) iii) Orthogonal Vectors(1mark) iv) Spanning Set                                                                                     (1mark)  b) Let � be the following matrix � 1 3−2 −8�. Compute the matrix i) �	(2marks) ii) ��
(3marks) iii) ��� (1marks) iv) Find numbers 
 and � such that �	 = 
� + �� , where � isthe2 × 2 identity matrix.                                                                    (4marks)  c) Consider the set ��� = �−2,4,1�, �	 = �1,2,3�� of vectors in ℝ�. Determine its dimension.                                                                                                          (5marks) d) Given �� = �2, −5, −1� and �� = �−7, −4, 6�. Find i) 3�� + ��  (2marks) ii)  the distance between ��  and ��(2marks) iii) normalize each vector                                                                           (4marks)  e) Prove that if ", # and $ are vectors such that " + # = " + $ then,# = $         (3marks)  QUESTION TWO (20 MARKS) a) Let ��� = %123&, ��	 = %456& and ��� = %210&. i) Determine if the set ����, ��	, ���� is linearly independent                (4marks) ii) If possible, find a linearly dependence relation among ���, ��	 and ���.                                                                                  (6marks)  b) Express the polynomial 
 = 6 + 11( + 6(	 as a linear combination of  
� = 2 + ( + 4(	, 
	 = 1 − ( + 3(	  and  
� = 3 + 2( + 5(	              (10marks)  QUESTION THREE (20 MARKS) 



a) i) What is a Vector Space                                                                                      (2mks) ii) Determine whether the function  ( − 3) = 1 constitute a vector space       (4marks)   b) Let * be a vector space, +,  a vector in *, 0-  the zero vector in *, . a scalar and 0 the zero scalar. Prove that  i) 0+/ = 0.                                                                                                  (2marks) ii) .0- = 0-                                                                                                    (2marks)  c) Let "� = % 0−52 & and  #0 = %−4−18 &. Find i)"�. #0                                                                                                                  (2marks) ii)  "� × #0                                                                                                             (3marks)            iii) The angle between "� and #0                                                                           (3marks)             iv) Projection "� onto #0                                                                                       (2marks)  QUESTION FOUR (20 MARKS) a) i) Let  �� ∈ * such that �� = �$, $	, 3�. Consider the subset * of ℝ� consisting of the vectors of the form �$, $	, 3�, where the second component is the square of the first. Determine whether * is a subspace of ℝ.                                                (5marks) ii.)Prove that if 4 and * are subspaces of 5, then the union4 ∪ * is a not generally a subspace of 5.                                                                                                    (5marks) b) Prove that for any set 7of vectors in*, the set span �7�is a subspace of *(10marks)  QUESTION FIVE (20 MARKS) a)  Determine whether5 = ��� = �1, −1,1�, �	 = �0,1,2�, �� = �3,0, −1��is a basis for ℝ�.                                                                                                          (5marks)  b) Consider the plane through the point �1,1,2� and perpendicular to the vector product of � = �1,2,3� and � = �3,0, 1�. Find the equation of the plane.(5marks)  c) i) What is a linear transformation?                                                               (2marks) ii) Determine whether the function 7: ℂ	 →  ℂ	 that swaps vector components  7 ;"#< = ;#"<  is a linear transformation                                                               (8marks)   


