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Abstract  

 

In the present study, the problem of estimation of the finite population mean of a sensitive study variable using the 

three-stage optional Randomized Response Technique (RRT) model under measurement errors is addressed. A 

generalized class of estimators is proposed using a mixture of auxiliary attribute and variable. Some members of 

the proposed generalized class of estimators are identified and studied. The bias and mean square error expressions 

for the proposed estimators are correctly derived up to first order Taylor’s series of approximation. The proposed 

estimator’s efficiency is investigated theoretically and numerically using both real data and simulated data. From 

the numerical study, the proposed estimators outperforms other existing estimators of the finite population mean. 
Furthermore, efficiencies of the proposed estimators of the finite population mean decreases as sensitivity level of 

the survey question increases. 
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1. Introduction  

In a survey, a researcher faces the problem of estimation of the finite population mean of a study variable using 

auxiliary variable in the presence of measurement errors. Measurement errors are the differences between the true 

value of a variable and the value recorded in a survey. Under-reporting, over-reporting, memory loss, prestige bias, 

processing errors, and incorrect respondent values are some of the causes of measurement errors in a survey. Shalabh 

(1997), Diwakar et al. (2012), Yadav et al. (2017), Vishwakarma et al. (2020), Singh and Karpe (2010), Kumar et al. 

(2011), and Shukla et al. (2012) all discuss the problem of estimation of the finite population mean of a non-sensitive 

variable using an auxiliary variable. Aside from measurement errors, researchers must contend with the issue of 

estimating the population mean of a sensitive survey question with a social stigmatizing characteristic. Personal 

income, alcohol consumption, abortion, tax evasion, number of sexual partners, negative web site usage, 

homosexuality, reckless driving, indiscriminate gambling, domestic violence, and illicit drug use are just a few 
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examples. Correct responses to such sensitive study variables are difficult to obtain in personal interviews that involve 

direct questioning of people, because the respondent’s privacy is not protected. In reality, the majority of respondents 

are always hesitant to provide honest response to a contentious topic for fear of embarrassment or loss of status. As a 

result, the respondent will either refuse to answer the question or will purposefully provide an incorrect response. 

Warner (1965) developed the Randomized Response Technique (RRT) to reduce response bias in surveys involving 

a sensitive study variable by protecting respondents’ anonymity. Randomized Response Technique (RRT) uses a 

scrambling variable that is independent of the survey and auxiliary variables to estimate the mean of a sensitive study 

variable. The respondent must provide a genuine response to a non-sensitive auxiliary variable while providing a 

scrambled response to the study variable. In additive scrambling Randomized Response Technique (RRT) model 

(Pollock and Bek 1976), the respondent is expected to scramble the genuine answer to a sensitive question by adding 

a random integer. The value-added is unknown to the survey practitioners, but the probability distribution of the 

scrambled response is assumed to be known. The optional Randomized Response Technique (ORRT) was pioneered 

by Chaudhuri and Mukharjee (1988). If a respondent believes the question is sensitive, the strategy involves giving 

them the option of providing a direct or scrambled response. Gupta et al (2006) proposed a one-stage optional 

Randomized Response Technique (ORRT) model in which the respondent provides a direct response if the question 

is not sensitive and a scrambled response otherwise. Gupta et al. (2012) proposed a two-stage optional Randomized 

Response Technique (ORRT) model to increase respondent participation and privacy. 

Mehta et al. (2012) proposed a three-stage optional Randomized Response Technique (ORRT) model to encourage 

respondent cooperation and privacy. In the first stage, a predetermined number of respondents,  𝑡ℎ  are asked to provide 

a direct response to a sensitive subject. Thereafter, another predetermined proportion, 𝑓ℎ is asked to scramble their 

response in the second stage. The remaining proportion, (1 − 𝑡ℎ − 𝑓ℎ) is then given the option of providing a direct 

or scrambled response. According to Neeraj and Mehta (2017) the three-stage optional RRT model ensures greater 

respondent cooperation and privacy. 

Mushtaq and Noor-Ul-Amin (2020), Shabbir and Naeem (2018), and Shabbir and Zahid (2019) discuss the problem 

of estimation of the finite population mean of a sensitive variable using non-sensitive auxiliary variable based on non-

optional Randomized Response Technique (RRT) model. Khalil (2018) proposed a generalized estimator in the 

presence of measurement errors based on non-optional Randomized Response Technique (RRT) model. Under simple 

random sampling, Khalil et al. (2019) studied the problem of estimation of the finite population mean of a sensitive 

study variable in the presence of measurement errors using a one-stage optional Randomized Response Technique 

(ORRT) model. Onyango et al. (2021) recently studied the problem of estimation of the finite population mean under 

measurement errors using the non-optional Randomized Response Technique (RRT) model in stratified two-phase 

sampling. 

In the literature, little work has been done on the topic of estimation of the finite population mean of a sensitive study 

variable in the presence of measurement errors using the three-stage optional RRT model. Additionally, the impact of 

measurement errors and three-stage optional RRT model on estimation of the finite population mean has not been 

investigated. 

Rest of the article is organized in the following way. Section 2 of this paper provides a detailed description of the 

population under study. Section 3 discusses some of the existing estimators of population mean in the literature. 

Section 4 describes the properties of the proposed estimators of population mean. Section 5 investigates the theoretical 

efficiency of the proposed estimator. A numerical study of the performance of the proposed estimators is done in 

section 6. Finally, section 7 contains the conclusions of the study. 

2. Population description and notations 

Consider a heterogeneous population 𝑈 = 𝑈1, 𝑈2, … , 𝑈𝑁 of size N that is divided into L homogeneous strata, each of 

which contains 𝑁ℎ units. The population is made up of a sensitive study variable, auxiliary variable and scrambled 

response denoted as Y, X, and Z respectively. Let �̅�ℎ  𝑎𝑛𝑑 �̅�ℎ denote the population means of the scrambled response 

and auxiliary variable in the ℎ𝑡ℎ stratum respectively. Furthermore, let 𝐴ℎ𝑗 denote the value of 𝑗𝑡ℎ attribute for 𝑖𝑡ℎ unit 

in the ℎ𝑡ℎ stratum. The auxiliary attribute takes the values 1 and 0 if 𝑖𝑡ℎ population unit possesses and does not possess 
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an attribute respectively. Furthermore, let 𝐴ℎ𝑗 = ∑ 𝜏ℎ𝑖𝑗
𝑁ℎ
ℎ  and  𝑃ℎ =

𝐴ℎ𝑗

𝑁ℎ
, denote the total number of units that have an 

attribute and proportion of units possessing an attribute in the ℎ𝑡ℎ  stratum respectively. In addition, let  

𝑆𝑍ℎ
2 , 𝑆𝑃ℎ

2 , 𝑎𝑛𝑑 𝑆𝑋ℎ
2  denote the population variances of the scrambled response, auxiliary attribute and variable in the  

ℎ𝑡ℎ stratum respectively. Let 𝑆𝑋ℎ , 𝑆𝑍𝑃ℎ , 𝑎𝑛𝑑 𝑆𝑋𝑃ℎ denote the population covariance’s between their subscripts in the 

ℎ𝑡ℎ stratum. Moreover, let 𝜌𝑍𝑋ℎ , 𝜌𝑍𝑝ℎ , 𝑎𝑛𝑑 𝜌𝑋𝑃ℎ denote the population coefficient of correlation between their 

subscripts in the ℎ𝑡ℎ stratum. Let  (𝑧ℎ𝑖
∗ , 𝑥ℎ𝑖

∗ ) 𝑎𝑛𝑑 (𝑍ℎ𝑖
∗ , 𝑋ℎ𝑖

∗ ) denote the observed and true values respectively for the 

scrambled response and auxiliary variable in the ℎ𝑡ℎ  stratum in the presence of measurement errors. Let 

 𝑇ℎ𝑖
∗ = 𝑧ℎ𝑖

∗ − 𝑍ℎ𝑖
∗ , and 𝑉ℎ𝑖

∗ = 𝑥ℎ𝑖
∗ − 𝑋ℎ𝑖

∗  denote the measurement errors associated with the scrambled response and 

auxiliary variable in the ℎ𝑡ℎ  stratum. The measurement errors are assumed to occur randomly and to be independent 

with a mean of zero. Additionally, the measurement errors are independent of the sensitive study and non-sensitive 

auxiliary variables. Let     𝑆𝑇ℎ
2  𝑎𝑛𝑑 𝑆𝑉ℎ

2  denote the population variances of the measurement errors associated with the 

scrambled response and auxiliary variable in the ℎ𝑡ℎ stratum respectively. 

In the literature researchers have used conventional and non-conventional measures of auxiliary variable to develop 

efficient estimators of population mean in the presence of extreme values. For more details see Almanjahie et al. 

(2021), Subzar et al. (2018), and Shabbir et al. (2021).  

The coefficient of variation of an auxiliary variable is given as 𝐶𝑋ℎ =
𝑆𝑋ℎ

�̅�ℎ
.  

The coefficient of skewness is defined as 𝛽1ℎ(𝑥) =
𝑁ℎ ∑ (𝑥ℎ𝑖−�̅�ℎ)3𝐿

ℎ=1

(𝑁ℎ−1)(𝑁ℎ−2)𝑆𝑋ℎ
3   

The coefficient of kurtosis is defined as 𝛽2ℎ(𝑥) =
𝑁ℎ(𝑁ℎ+1)∑ (𝑥ℎ𝑖−�̅�ℎ)4𝐿

ℎ=1

(𝑁ℎ−1)(𝑁ℎ−2)(𝑁ℎ−3)𝑆𝑋ℎ
3 −

3(𝑁ℎ−1)2

(𝑁ℎ−2)(𝑁ℎ−3)
  

The mid-range is given as 𝑀𝑅ℎ(𝑥) =
(𝑥ℎ(1)+𝑥ℎ(𝑁ℎ))

2
, where 𝑥ℎ(1) is the smallest value and  𝑥ℎ(𝑁ℎ) is the largest value 

in a data set. 

Tri-mean was proposed by Turkey (1970) and is defined as 𝑇𝑀ℎ(𝑥) =
𝑄1ℎ(𝑥)+2𝑄2ℎ(𝑥)+𝑄3ℎ(𝑥)

4
, where 𝑄1ℎ(𝑥) and 

𝑄2ℎ(𝑥), 𝑎𝑛𝑑 𝑄3ℎ(𝑥) are first, second and third quartiles respectively.  

The quartile deviation is defined as 𝑄𝐷ℎ(𝑥) =
(𝑄3ℎ(𝑥)−𝑄1ℎ(𝑥))

2
. 

The Hodge-Lehmann (1963) estimator is defined as 𝐻𝐿ℎ(𝑥) = 𝑚𝑒𝑑𝑖𝑎𝑛
𝑥ℎ(𝑗)+𝑥ℎ(𝑘)

2
, where 1 ≤ 𝑗 ≤ 𝑘 ≤ 𝑁ℎ.   

A relatively large sample of size of 𝑛ℎ
′  is drawn from the ℎ𝑡ℎ stratum using simple random sampling without 

replacement (SRSWOR). Let �̅�ℎ
′ =

1

𝑛ℎ
′ ∑ 𝑥ℎ𝑖

𝑛ℎ
′

𝑖=1
 and 𝑝ℎ

′ =
𝑎ℎ𝑗

𝑛ℎ
′  be the sample mean of the auxiliary variable and the 

proportion of units possessing an auxiliary attribute in the first phase sample respectively. A second phase random 

sample of size 𝑛ℎ is drawn from the first phase sample using a simple random sampling without replacement 

(SRSWOR). Furthermore, let �̅�ℎ =
1

𝑛ℎ
∑ 𝑧ℎ𝑖

𝑛ℎ
𝑖=1 , �̅�ℎ =

1

𝑛ℎ
∑ 𝑥ℎ𝑖

𝑛ℎ
𝑖=1  and 𝑝ℎ =

𝑎ℎ𝑗

𝑛ℎ
 be the sample mean of scrambled 

response, auxiliary variable, and the proportion of units in the second phase sample that have an auxiliary attribute 

respectively. 
 
 
 

3. Some Existing Estimators 

 
(i) The ordinary estimator is defined as 

𝑡0 = ∑ 𝑊ℎ�̅�ℎ
𝐿
ℎ=1         (1) 

 

The variance of the estimator is given as 

𝑉𝑎𝑟(𝑡0) ≅ ∑𝑊ℎ
2𝐵ℎ

𝐿

ℎ=1

 

 

(2) 

, where 𝐵ℎ = 𝜃ℎ(𝑆𝑍ℎ
2 + 𝑆𝑇ℎ

2 ) and 𝜃ℎ = (
1

𝑛ℎ
−

1

𝑁ℎ
).  

(ii) The usual ratio estimator is defined as 
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𝑡𝑅 = ∑ 𝑊ℎ�̅�ℎ

�̅�ℎ
′

�̅�ℎ

𝐿

ℎ=1

 

 

(3) 

The bias and MSE are given as 

𝐵𝑖𝑎𝑠(𝑡𝑅) ≅ ∑
𝑊ℎ

�̅�ℎ
[
9

8
𝑅ℎ(𝐴ℎ − 𝐶ℎ) − (𝐸ℎ − 𝐷ℎ)]𝐿

ℎ=1     

(4) 
, and  

 

𝑀𝑆𝐸(𝑡𝑅) ≅ ∑ 𝑊ℎ
2[𝐵ℎ + 𝑅ℎ

2(𝐴ℎ − 𝐶ℎ) − 2𝑅ℎ(𝐸ℎ − 𝐷ℎ)]𝐿
ℎ=1   

       (5) 

 

, respectively, where 𝐴ℎ = 𝜃ℎ(𝑆𝑋ℎ
2 + 𝑆𝑉ℎ

2 ),  𝐶ℎ = 𝜃ℎ
 ′𝑆𝑋ℎ

2 ,  𝐷ℎ = 𝜃ℎ
 ′𝑆𝑍𝑋ℎ

2 , 𝐸ℎ = 𝜃ℎ𝑆𝑍𝑋ℎ , and 𝜃ℎ
 ′ = (

1

𝑛ℎ
′ −

1

𝑁ℎ
).  

(iii) Bahl and Tuteja (1991) exponential-ratio type estimator is defined as 

𝑡𝐸𝑅 = ∑ 𝑊ℎ�̅�ℎ𝑒𝑥𝑝(
�̅�ℎ

′ − �̅�ℎ

�̅�ℎ
′ + �̅�ℎ

)

𝐿

ℎ=1

 

 

 

(6) 

The bias and MSE are given as 

 

𝐵𝑖𝑎𝑠(𝑡𝐸𝑅) ≅ ∑
𝑊ℎ

2�̅�ℎ
[
3

4
𝑅ℎ(𝐴ℎ − 𝐶ℎ) − (𝐸ℎ − 𝐷ℎ)]𝐿

ℎ=1   

 

(7) 

, and  

𝑀𝑆𝐸(𝑡𝐸𝑅) ≅ ∑ 𝑊ℎ
2 [𝐵ℎ +

1

4
𝑅ℎ

2(𝐴ℎ − 𝐶ℎ) − 𝑅ℎ(𝐸ℎ − 𝐷ℎ)]𝐿
ℎ=1   

 

       (8) 

, respectively 

4. Proposed Strategy of Estimation of Finite Population Mean 

In the three-stage optional RRT model, a respondent is required to provide a scrambled response defined as 
 

𝑍ℎ𝑖 = {
𝑌ℎ𝑖   𝑤𝑖𝑡ℎ 𝑝𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ + (1 − 𝑡ℎ − 𝑓ℎ)(1 − 𝜓ℎ)

𝑌ℎ𝑖 + 𝑆ℎ𝑖 , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑓ℎ + (1 − 𝑡ℎ − 𝑓ℎ)  
 

 

 

(9) 

, where 𝜓ℎand 𝑆ℎ𝑖  are the sensitivity level and scrambling variable respectively. We assume that𝑆ℎ𝑖~𝑁(0, 𝑆𝑆ℎ
2 ). The 

mean of the scrambled response is given as 

𝐸(𝑍ℎ𝑖) = 𝐸[(𝑌ℎ𝑖)(1 − 𝜑ℎ) + (𝑌ℎ𝑖 + 𝑆𝑆ℎ𝑖)𝜑ℎ] 
 

     (10) 

, where 𝜑ℎ = 𝑓ℎ + (1 − 𝑡ℎ − 𝑓ℎ) 

𝐸(𝑍ℎ𝑖) = 𝐸[ (𝑌ℎ𝑖) − 𝑌ℎ𝑖𝜑ℎ + 𝑌ℎ𝑖𝜑ℎ + 𝑆𝑆ℎ𝑖𝜑ℎ] 
 

     (11) 

 

𝐸(𝑍ℎ𝑖) = 𝐸(𝑌ℎ𝑖)      (12) 

The variance of the scrambled response is given as 

𝑆𝑍ℎ
2 = 𝐸(𝑍ℎ𝑖

2 ) − [𝐸(𝑍ℎ𝑖)]
2      (13) 

 

𝑆𝑍ℎ
2 = 𝐸(𝑌ℎ𝑖

2)(1 − 𝜑ℎ) + 𝐸[(𝑌ℎ𝑖 + 𝑆𝑆ℎ𝑖)
2]𝜑ℎ − [𝐸(𝑍ℎ𝑖)]

2 

 

     (14) 

 

𝑆𝑍ℎ
2 = 𝐸(𝑌ℎ𝑖

2 ) − 𝐸(𝑌ℎ𝑖
2)𝜑ℎ + 𝐸(𝑌ℎ𝑖

2)𝜑ℎ + 2𝐸(𝑌ℎ𝑖𝑆𝑆ℎ𝑖)𝜑ℎ + 𝐸(𝑆𝑆ℎ𝑖)
2𝜑ℎ − [𝐸(𝑍ℎ𝑖)]

2      (15) 

 

𝑆𝑍ℎ
2 = 𝑆𝑌ℎ

2 + 𝜑ℎ𝑆𝑆ℎ
2       (16) 

The three stage optional RRT model reduces to one stage optional RRT model and two stage optional RRT model 

when  𝜓ℎ = 0 𝑎𝑛𝑑 𝜓ℎ = 1 respectively. 

 

4.1 Proposed generalized class of estimators 

Let 𝑊ℎ denote the weight of the ℎ𝑡ℎ stratum. Further let �̅�ℎ
′  and 𝑝ℎ

′  denote the mean of an auxiliary variable and 

proportion of units possessing an attribute in the first phase ℎ𝑡ℎ  stratum sample respectively. In addition, let 
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�̅�ℎ , �̅�ℎ , 𝑎𝑛𝑑 𝑝ℎ  denote the means of the scrambled response, auxiliary variable and proportion of units possessing an 

attribute in the second phase in ℎ𝑡ℎ  stratum sample respectively. The proposed generalized class of estimators is 

defined as 

𝑡𝑔 = ∑ 𝑊ℎ[�̅�ℎ + 𝛼ℎ(�̅�ℎ
′ − �̅�ℎ) + 𝛽ℎ(𝑝ℎ

′ − 𝑝ℎ)]𝑒𝑥𝑝(
𝑎ℎ(�̅�ℎ

′ − �̅�ℎ)

𝑎ℎ(�̅�ℎ
′ − �̅�ℎ) + 2𝑏ℎ

)

𝐿

ℎ=1

 

 

     (17) 

, where 𝛼ℎ  𝑎𝑛𝑑 𝛽ℎ  are suitable constants, 𝑎ℎ   and 𝑏ℎare either real numbers or known population parameters of an 

auxiliary variable. 

To obtain the expressions for the bias and MSE of the proposed estimator, let 

𝜎𝑋1ℎ = �̅�ℎ
′ − �̅�ℎ , 

 

    (18) 

𝜎𝑃1ℎ = 𝑝ℎ
′ − 𝑃ℎ , 

 

    (19) 

𝜎𝑋ℎ = �̅�ℎ − �̅�ℎ , 
 

    (20) 

𝜎𝑃ℎ = 𝑝ℎ − 𝑃ℎ , 
 

    (21) 

𝜎𝑍ℎ = �̅�ℎ − �̅�ℎ 

 

    (22) 

Take expectations on both sides of equations (18) - (22) to obtain 

𝐸(𝜎𝑍ℎ) = 𝐸(𝜎𝑋ℎ) = 𝐸(𝜎𝑋1ℎ) = 𝐸(𝜎𝑃ℎ) = 𝐸(𝜎𝑃1ℎ) = 0 

 

(23) 

Square both sides of equations (18) - (22) and then introduce expectations to obtain 

E(σXh
2 ) = θh(SXh

2 + SVh
2 ) = Ah 

 

(24) 

E(σZh
2 ) = θh(SZh

2 + STh
2 ) = Bh (25) 

 

E(σX1h
2 ) = E(𝜎𝑋1ℎ𝜎𝑋ℎ) = θh

′ SXh
2 = Ch 

(26) 

E(𝜎𝑋1ℎ𝜎𝑍ℎ) = θh
′ SZXh

2 = Dh 

 

(27) 

E(𝜎𝑋ℎ𝜎𝑍ℎ) = θhSZXh
2 = Eh 

 

(28) 

E(σPh
2 ) = θhSPh

2 = Fh 

 

(29) 

E(σP1h
2 ) = E(𝜎𝑃1ℎ𝜎𝑃ℎ) = θh

′ SPh
2 = Gh 

 

(30) 

E(𝜎𝑃ℎ𝜎𝑍ℎ) = θhSZPh
2 = Hh 

 

(31) 

E(𝜎𝑃1ℎ𝜎𝑍ℎ) = θh
′ SZPh

2 = Ih 

 

(32) 

E(𝜎𝑃ℎ𝜎𝑋ℎ) = θhSPXh
2 = Jh 

 

(33) 

E(𝜎𝑃1ℎ𝜎𝑋ℎ) = E(𝜎𝑃ℎ𝜎𝑋1ℎ) = E(𝜎𝑋1ℎ𝜎𝑃1ℎ) = θh
′ SXPh

2 = Lh 

 

(34) 

Substitute equations (18) - (22) in (17) and expand using Taylor’s approximation while ignoring terms of order greater 
than two to obtain 

 (35) 
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𝑡𝑔 = ∑ 𝑊ℎ

[
 
 
 
 
 
 
 
 
 
 �̅�ℎ −

1

2
�̅�ℎ𝜆ℎ𝜎𝑋ℎ +

1

2
�̅�ℎ𝜆ℎ𝜎𝑋1ℎ +

3

8
�̅�ℎ𝜆ℎ

2𝜎𝑋ℎ
2 −

1

4
�̅�ℎ𝜆ℎ

2  𝜎𝑋ℎ𝜎𝑋1ℎ −
1

8
 �̅�ℎ𝜆ℎ

2𝜎𝑋1ℎ
2

+𝜎𝑍ℎ −
1

2
𝜆ℎ𝜎𝑋ℎ𝜎𝑍ℎ +

1

2
𝜆ℎ𝜎𝑋1ℎ𝜎𝑍ℎ + 𝛼ℎ𝜎𝑋1ℎ −

1

2
𝜆ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑋1ℎ +

1

2
𝜆ℎ𝛼ℎ𝜎𝑋1ℎ

2 − 𝛼ℎ𝜎𝑋ℎ +
1

2
𝜆ℎ𝛼ℎ𝜎𝑋ℎ

2 −
1

2
𝜆ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑋1ℎ + 𝛽ℎ𝜎𝑃1ℎ

−
1

2
𝜆ℎ𝛽ℎ𝜎𝑋ℎ𝜎𝑝1ℎ +

1

2
𝜆ℎ𝛽ℎ𝜎𝑋1ℎ𝜎𝑝1ℎ − 𝛽ℎ𝜎𝑃ℎ +

1

2
𝜆ℎ𝛽ℎ𝜎𝑋ℎ𝜎𝑝1ℎ

−
1

2
𝜆ℎ𝛽ℎ𝜎𝑃ℎ𝜎𝑋1ℎ ]

 
 
 
 
 
 
 
 
 
 

𝐿

ℎ=1

 

 

, where𝜆ℎ =
𝑎ℎ

𝑎ℎ�̅�ℎ+𝑏ℎ
. 

Subtract the population mean from both sides of the equation (35) to obtain 

(𝑡𝑔 − �̅�) = ∑ 𝑊ℎ

[
 
 
 
 
 
 
 
 
 
 �̅�ℎ𝜆ℎ𝜎𝑋ℎ +

1

2
�̅�ℎ𝜆ℎ𝜎𝑋1ℎ +

3

8
�̅�ℎ𝜆ℎ

2𝜎𝑋ℎ
2 −

1

4
�̅�ℎ𝜆ℎ

2  𝜎𝑋ℎ𝜎𝑋1ℎ −
1

8
 �̅�ℎ𝜆ℎ

2𝜎𝑋1ℎ
2

+𝜎𝑍ℎ −
1

2
𝜆ℎ𝜎𝑋ℎ𝜎𝑍ℎ +

1

2
𝜆ℎ𝜎𝑋1ℎ𝜎𝑍ℎ + 𝛼ℎ𝜎𝑋1ℎ −

1

2
𝜆ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑋1ℎ +

1

2
𝜆ℎ𝛼ℎ𝜎𝑋1ℎ

2 − 𝛼ℎ𝜎𝑋ℎ +
1

2
𝜆ℎ𝛼ℎ𝜎𝑋ℎ

2 −
1

2
𝜆ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑋1ℎ + 𝛽ℎ𝜎𝑃1ℎ

−
1

2
𝜆ℎ𝛽ℎ𝜎𝑋ℎ𝜎𝑝1ℎ +

1

2
𝜆ℎ𝛽ℎ𝜎𝑋1ℎ𝜎𝑝1ℎ − 𝛽ℎ𝜎𝑃ℎ +

1

2
𝜆ℎ𝛽ℎ𝜎𝑋ℎ𝜎𝑝1ℎ

−
1

2
𝜆ℎ𝛽ℎ𝜎𝑃ℎ𝜎𝑋1ℎ ]

 
 
 
 
 
 
 
 
 
 

𝐿

ℎ=1

 

 

(36) 

Take expectations on both sides of the equation (36) and substitute equations (23) - (34) to obtain an approximation 

for the bias as 

 

𝐵𝑖𝑎𝑠(𝑡𝑔) ≅ ∑  
𝑊ℎ𝜆ℎ

2
[
3

4
𝜆ℎ�̅�ℎ(𝐴ℎ − 𝐶ℎ) + 𝛼ℎ(𝐴ℎ − 𝐶ℎ) − (𝐸ℎ − 𝐷ℎ) + 𝛽ℎ(𝐽ℎ − 𝐿ℎ)]

𝐿

ℎ=1

 

 

(37) 

Square both sides of equation (36) to obtain 

 

(𝑡𝑔 − �̅�)
2
≅ ∑ 𝑊ℎ

3  [
1

2
�̅�ℎ𝜆ℎ𝜎𝑋1ℎ −

1

2
�̅�ℎ𝜆ℎ𝜎𝑋ℎ + 𝜎𝑍ℎ + 𝛼ℎ𝜎𝑋1ℎ − 𝛼ℎ𝜎𝑋ℎ + 𝛽ℎ𝜎𝑃1ℎ − 𝛼ℎ𝜎𝑃ℎ]

2𝐿

ℎ=1

 

 

(38) 

Simplify equation (38) while ignoring terms of order greater than two to obtain 

 

(𝑡𝑔 − �̅�)
2

≅ ∑ 𝑊ℎ
3

[
 
 
 
 
 
 
 
 𝜎𝑍ℎ

2 +
1

4
𝜆ℎ

2 �̅�ℎ
2𝜎𝑋ℎ

2 +
1

4
𝜆ℎ

2 �̅�ℎ
2𝜎𝑋1ℎ

2 + 𝛼ℎ
2𝜎𝑋1ℎ

2 + 𝛼ℎ
2𝜎𝑋ℎ

2 + 𝛽ℎ
2𝜎𝑃1ℎ

2 + 𝛽ℎ
2𝜎𝑃ℎ

2

−�̅�ℎ𝜆ℎ𝜎𝑋ℎ𝜎𝑍ℎ + �̅�ℎ𝜆ℎ𝜎𝑋1ℎ𝜎𝑍ℎ + 2𝛼ℎ𝜎𝑍ℎ𝜎𝑋1ℎ − 2𝛼ℎ𝜎𝑍ℎ𝜎𝑋ℎ + 2𝛽ℎ𝜎𝑃1ℎ𝜎𝑍ℎ

−2𝛽ℎ𝜎𝑃ℎ𝜎𝑍ℎ −
1

2
 𝜆ℎ

2 �̅�ℎ
2𝜎𝑋1ℎ𝜎𝑋ℎ − �̅�ℎ𝜆ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑋1ℎ + �̅�ℎ𝜆ℎ𝛼ℎ𝜎𝑋ℎ

2

−�̅�ℎ𝜆ℎ𝛽ℎ𝜎𝑃1ℎ𝜎𝑋ℎ + �̅�ℎ𝜆ℎ𝛽ℎ𝜎𝑃ℎ𝜎𝑋ℎ + �̅�ℎ𝜆ℎ𝛼ℎ𝜎𝑋1ℎ
2 − �̅�ℎ𝜆ℎ𝛼ℎ𝜎𝑋1ℎ𝜎𝑋ℎ

+�̅�ℎ𝜆ℎ𝛽ℎ𝜎𝑋1ℎ𝜎𝑃1ℎ − �̅�ℎ𝜆ℎ𝛽ℎ𝜎𝑋1ℎ𝜎𝑃ℎ − 2𝛼ℎ 
2 𝜎𝑋1ℎ𝜎𝑋ℎ + 2𝛽ℎ𝛼ℎ𝜎𝑋1ℎ𝜎𝑃1ℎ

−2𝛽ℎ𝛼ℎ𝜎𝑋1ℎ𝜎𝑃ℎ − 2𝛽ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑃1ℎ + 2𝛽ℎ𝛼ℎ𝜎𝑋ℎ𝜎𝑃ℎ − 2𝛽ℎ
2𝜎𝑃1ℎ𝜎𝑃ℎ ]

 
 
 
 
 
 
 
 

𝐿

ℎ=1

 

 

(39) 

Take expectations on both sides of equation (39) and substitute equations (24) - (34) to obtain an approximation for 
the MSE as 

𝑀𝑆𝐸(𝑡𝑔) ≅ ∑ 𝑊ℎ
3 [𝐵ℎ + 𝛾1ℎ + 𝛼ℎ

2𝛾2ℎ + 𝛽ℎ
2𝛾3ℎ + 𝛽ℎ𝛾4ℎ + 𝛼ℎ𝛾5ℎ + 2𝛽ℎ  𝛼ℎ𝛾5ℎ]

𝐿

ℎ=1

 

(40) 
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, where 

𝛾1ℎ =
1

4
�̅�ℎ

2𝜆ℎ
2(𝐴ℎ − 𝐶ℎ) − �̅�ℎ𝜆ℎ(𝐸ℎ − 𝐷ℎ) 

 

𝛾2ℎ = (𝐴ℎ − 𝐶ℎ) 
 

𝛾3ℎ = (𝐹ℎ − 𝐺ℎ) 

 

𝛾4ℎ = �̅�ℎ𝜆ℎ(𝐽ℎ − 𝐿ℎ) − 2(𝐻ℎ − 𝐼ℎ) 
 

𝛾5ℎ = �̅�ℎ𝜆ℎ(𝐴ℎ − 𝐶ℎ) − 2(𝐸ℎ − 𝐷ℎ) 
 

𝛾6ℎ = (𝐽ℎ − 𝐿ℎ) 

Differentiate equation (40) partially with respect to 𝛼ℎ and 𝛽ℎ, then equate to zero to obtain 

 

𝛼ℎ

(𝑜𝑝𝑡)
= −

(𝛾5ℎ𝛾3ℎ − 𝛾4ℎ𝛾6ℎ)

2(𝛾2ℎ𝛾3ℎ − 𝛾6ℎ
2 )

 

 

(41) 

 

𝛽ℎ
(𝑜𝑝𝑡)

=
(𝛾5ℎ𝛾6ℎ − 𝛾4ℎ𝛾2ℎ)

2(𝛾2ℎ𝛾3ℎ − 𝛾6ℎ
2 )

 

 

 

(42) 

Substitute equation (41) and (42) in (40) to obtain the minimum MSE as 

𝑀𝑆𝐸(𝑡𝑔)
𝑚𝑖𝑛

≅ ∑ 𝑊ℎ
3  [𝐵ℎ + 𝛾1ℎ −

𝛾4ℎ
2

4𝛾3ℎ

−
(𝛾5ℎ𝛾3ℎ − 𝛾4ℎ𝛾6ℎ)

2

(𝛾2ℎ𝛾3ℎ − 𝛾6ℎ
2 )

]

𝐿

ℎ=1

 

 

(43) 

 

4.2 Members of the family of proposed estimator 

Members of the proposed generalized class of estimators can be obtained by making appropriate choices 

of 𝛼ℎ  𝑎𝑛𝑑 𝛽ℎ . Table 1 shows some special cases of the proposed generalized class of estimators. Expressions for the 

bias and mean squared errors (MSE) for members of the proposed generalized class of estimators are obtained by 

substituting appropriate values of 𝛼ℎ  𝑎𝑛𝑑 𝛽ℎ in equations (37) and (43) respectively. 

 

Table 1: Some Members of the Developed Generalized Class of Estimators. 

No. proposed generalized class of estimators 𝛼ℎ 𝛽ℎ 

1 
𝑡0 = ∑𝑊ℎ �̅�ℎ  

𝐿

ℎ=1

 

 

0 1 

2 

𝑡1 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
(�̅�ℎ

′ − �̅�ℎ)

(�̅�ℎ
′ − �̅�ℎ)

)

𝐿

ℎ=1

 

 

1 0 

3 

𝑡2 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
𝑎ℎ(�̅�ℎ

′ − �̅�ℎ)

(�̅�ℎ
′ − �̅�ℎ) + 2𝐶𝑋ℎ

)

𝐿

ℎ=1

 

 

1 𝐶𝑋ℎ 

4 

𝑡3 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
𝐶𝑋ℎ(�̅�ℎ

′ − �̅�ℎ)

𝐶𝑋ℎ(�̅�ℎ
′ − �̅�ℎ) + 2𝜌𝑌𝑋ℎ

)

𝐿

ℎ=1

 

 

𝐶𝑋ℎ 𝜌𝑌𝑋ℎ 
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5 𝑡4

= ∑ 𝑊ℎξh𝑒𝑥𝑝(
𝛽1ℎ(𝑥)(�̅�ℎ

′ − �̅�ℎ)

𝛽1ℎ(𝑥)(�̅�ℎ
′ − �̅�ℎ) + 2𝜌𝑌𝑋ℎ

)

𝐿

ℎ=1

 

 

𝛽1ℎ(𝑥) 𝜌𝑌𝑋ℎ 

6 

𝑡5 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
 𝛽2ℎ(𝑥)(�̅�ℎ

′ − �̅�ℎ)

 𝛽2ℎ(𝑥)(�̅�ℎ
′ − �̅�ℎ) + 2𝛽1ℎ(𝑥)

)

𝐿

ℎ=1

 

 

 𝛽2ℎ(𝑥) 𝛽1ℎ(𝑥) 

7 

𝑡6 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
𝑄𝐷ℎ(𝑥)(�̅�ℎ

′ − �̅�ℎ)

𝑄𝐷ℎ(𝑥)(�̅�ℎ
′ − �̅�ℎ) + 2𝑇𝑀ℎ(𝑥)

)

𝐿

ℎ=1

 

 

𝑄𝐷ℎ(𝑥) 𝑇𝑀ℎ(𝑥) 

8 

𝑡7 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
𝑄𝐷ℎ(𝑥)(�̅�ℎ

′ − �̅�ℎ)

𝑄𝐷ℎ(𝑥)(�̅�ℎ
′ − �̅�ℎ) + 2𝑀𝑅ℎ(𝑥)

)

𝐿

ℎ=1

 

 

𝑄𝐷ℎ(𝑥) 𝑀𝑅ℎ(𝑥) 

9 
𝑡8 = ∑ 𝑊ℎξh𝑒𝑥𝑝(

𝐻𝐿ℎ(𝑥)(�̅�ℎ
′ − �̅�ℎ)

𝐻𝐿ℎ(𝑥)(�̅�ℎ
′ − �̅�ℎ) + 2𝑇𝑀ℎ(𝑥)

)

𝐿

ℎ=1

 

 

𝐻𝐿ℎ(𝑥) 𝑇𝑀ℎ(𝑥) 

10 𝑡9

= ∑ 𝑊ℎξh𝑒𝑥𝑝(
𝜌𝑌𝑋ℎ(�̅�ℎ

′ − �̅�ℎ)

𝜌𝑌𝑋ℎ(�̅�ℎ
′ − �̅�ℎ) + 2𝑄𝐷ℎ(𝑥)

)

𝐿

ℎ=1

 

 

𝜌𝑌𝑋ℎ 𝑄𝐷ℎ(𝑥) 

11 

𝑡10 = ∑𝑊ℎξh𝑒𝑥𝑝(
(�̅�ℎ

′ − �̅�ℎ)

(�̅�ℎ
′ − �̅�ℎ) + 2𝜌𝑌𝑋ℎ

)

𝐿

ℎ=1

 

 

1 𝜌𝑌𝑋ℎ 

12 

𝑡11 = ∑ 𝑊ℎξh𝑒𝑥𝑝(
(�̅�ℎ

′ − �̅�ℎ)

(�̅�ℎ
′ − �̅�ℎ) + 2𝑄𝐷ℎ(𝑥)

)

𝐿

ℎ=1

 

 

1 𝑄𝐷ℎ(𝑥) 

 

, where ξh = �̅�ℎ + 𝛼ℎ(�̅�ℎ
′ − �̅�ℎ) + 𝛽ℎ(𝑝ℎ

′ − 𝑝ℎ) 
 

5. Theoretical Efficiency Comparison 

The proposed generalized class of estimators performs better than other existing estimators when following 

conditions are satisfied 

(i)  From equations (2) and (43), 𝑀𝑆𝐸(𝑡𝑔)
𝑚𝑖𝑛

< 𝑉𝑎𝑟(𝑡0) if 

[𝛾1ℎ −
𝛾4ℎ

2

4𝛾3ℎ

−
(𝛾5ℎ𝛾3ℎ − 𝛾4ℎ𝛾6ℎ)

2

(𝛾2ℎ𝛾3ℎ − 𝛾6ℎ
2 )

] < 0 
    (44) 

 

(ii) From equations (5) and (43), 𝑀𝑆𝐸(𝑡𝑔)
𝑚𝑖𝑛

< 𝑀𝑆𝐸(𝑡𝑅) if 

 

[𝛾1ℎ −
𝛾4ℎ

2

4𝛾3ℎ

−
(𝛾5ℎ𝛾3ℎ − 𝛾4ℎ𝛾6ℎ)2

(𝛾2ℎ𝛾3ℎ − 𝛾6ℎ
2 )

− 𝑅ℎ
2(𝐴ℎ − 𝐶ℎ) + 2𝑅ℎ(𝐸ℎ − 𝐷ℎ)] < 0 

    (45) 

 

(iii) From equations (8) and (43), 𝑀𝑆𝐸(𝑡𝑔)
𝑚𝑖𝑛

< 𝑀𝑆𝐸(𝑡𝐸𝑅) if 

[𝛾1ℎ −
𝛾4ℎ

2

4𝛾3ℎ

−
(𝛾5ℎ𝛾3ℎ − 𝛾4ℎ𝛾6ℎ)

2

(𝛾2ℎ𝛾3ℎ − 𝛾6ℎ
2 )

−
1

4
𝑅ℎ

2(𝐴ℎ − 𝐶ℎ) + 𝑅ℎ(𝐸ℎ − 𝐷ℎ)] < 0 

 

    (46) 
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6. Empirical Study 

A numerical study is carried out in order to compare the performance of the proposed generalized class of estimators 

to other existing estimators of the finite population mean. The effects of measurement errors and the three-stage 

optional RRT model on estimation of the finite population mean are also investigated. Simulated data, Covid-19 global 

pandemic (www.worldometer.info), and Rosner (2015) data are used in the empirical study. For data simulation and 
coding, the R programming language is used. Each population unit is subjected to measurement errors, which are 

normally distributed with mean 2 and variance 5. The efficiency of the proposed estimators is compared to that of 

other estimators based on the least variance and PRE methods. The PREs of estimators of the finite population mean 

are calculated using the expression; 

𝑃𝑅𝐸(𝑡𝑗) =
𝑉𝑎𝑟(𝑡0) 

𝑀𝑆𝐸(𝑡𝑗) 
× 100 

    (47) 

An estimator with the highest PRE in comparison to the ordinary mean estimator is considered to be more efficient 

than other estimators. Additionally, the mean square error (MSE) and percent relative efficiency (PRE) are calculated 

at different sensitivity levels of the survey question. The coefficient of correlation between the sensitive survey 

variable and auxiliary variable is positive. Furthermore, there is negative correlation between auxiliary attribute, 

sensitive and auxiliary variable in all the three data sets. The following is a description of the data that is used: 

 

Population I: Simulated data 

Stratum 1 

𝑋1 = 𝑟𝑛𝑜𝑟𝑚(100, 450, 15) 

𝑌1 = 𝑋1 + 𝑟𝑛𝑜𝑟𝑚(100, 0, 1) 

𝑋1 = 𝑋1 + 𝑟𝑛𝑜𝑟𝑚(100, 2, 5) 

𝑋1 = 𝑟𝑛𝑜𝑟𝑚(100, 0, 2) 

𝑍1 = 𝑌1 + 𝑆1 

𝑧1 = 𝑌1 + 𝑟𝑛𝑜𝑟𝑚(100, 2, 5) 

Auxiliary attributes are values of 𝑌1 < 𝑚𝑒𝑎𝑛(𝑌1) 

 

Stratum 2 

𝑋2 = 𝑟𝑛𝑜𝑟𝑚(250, 50, 15) 

𝑌2 = 𝑋2 + 𝑟𝑛𝑜𝑟𝑚(250, 0, 1) 

𝑋2 = 𝑋2 + 𝑟𝑛𝑜𝑟𝑚(100, 2, 5) 

𝑋2 = 𝑟𝑛𝑜𝑟𝑚(250, 0, 2) 

𝑍2 = 𝑌2 + 𝑆2 

𝑧2 = 𝑌2 + 𝑟𝑛𝑜𝑟𝑚(250, 2, 5) 

Auxiliary attributes are values of 𝑌2 < 𝑚𝑒𝑎𝑛(𝑌2) 

 

Stratum 3 

𝑋3 = 𝑟𝑛𝑜𝑟𝑚(300, 920, 24) 

𝑌3 = 𝑋3 + 𝑟𝑛𝑜𝑟𝑚(300, 0, 1) 

𝑋3 = 𝑋3 + 𝑟𝑛𝑜𝑟𝑚(300, 2, 5) 

𝑋3 = 𝑟𝑛𝑜𝑟𝑚(300, 0, 2) 

𝑍3 = 𝑌2 + 𝑆2 

𝑧3 = 𝑌3 + 𝑟𝑛𝑜𝑟𝑚(300, 2, 5) 

Auxiliary attributes are values of 𝑌3 < 𝑚𝑒𝑎𝑛(𝑌3) 

 

Stratum 4 

𝑋4 = 𝑟𝑛𝑜𝑟𝑚(350, 500, 8) 

𝑌4 = 𝑋4 + 𝑟𝑛𝑜𝑟𝑚(350, 0, 1) 

𝑋4 = 𝑋4 + 𝑟𝑛𝑜𝑟𝑚(350, 2, 5) 

𝑋4 = 𝑟𝑛𝑜𝑟𝑚(350, 0, 2) 

http://www.worldometer.info/
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𝑍4 = 𝑌4 + 𝑆4 

𝑧4 = 𝑌4 + 𝑟𝑛𝑜𝑟𝑚(350, 2, 5) 

Auxiliary attributes are values of 𝑌4 < 𝑚𝑒𝑎𝑛(𝑌4) 

 

Population II: Covid-19 global pandemic data 

The data set is for Covid-19 global pandemic (www.worldometer.info) for the period of January 3rd, 2020 to September 

17th, 2021. The data is classified into 6 strata according to World Health organisation (WHO) regions; African 

Region (𝑁1 = 31200), the American region (𝑁2 = 34944), the Eastern Mediterranean Region (𝑁3 = 13728)  the 

European Region ( 𝑁4 = 38688), the South-East Asia Region ( 𝑁5 = 6864), and the Western Pacific Region ( 𝑁6 =
2184). The number of new cases and deaths in a given day are regarded as the auxiliary and survey variables, 

respectively. The number of new deaths with a value less than ten is regarded as an auxiliary attribute. For each unit 

in the data set, a scrambling response with mean 0 and variance 2 was generated and used to calculate the response 
variable.  

 

Population III: Rosner (2015) 

The population consist of two strata of sizes; ( 𝑁1 = 480)  and ( 𝑁2 = 174) with Y as forced expiratory volume, X 

as age (in years), and auxiliary attribute as the values of forced expiratory volume less than �̅�ℎ. Furthermore, Smoking 

(Yes=1, No=0) is taken to be the scrambling variable and is used in generation of response variable 

 

Table 2: Population statistics for the sensitive variable, auxiliary attribute and variable 

 

 

6.1 Results and Discussion 

Table 3 shows the values of PREs for population I at different sensitivity levels of the survey question. The proposed 

generalized class of estimators perform better than other existing mean estimator in both cases for without and with 

measurement errors. The values of PREs declines as the value of the sensitivity levels of survey question increases 

for all the estimators with exception of the ratio estimator. Additionally, the values of PREs are high in the absence of 

measurement errors but decreases when measurement errors are introduced in the survey. 

 

 

 

  �̅�ℎ  �̅�ℎ 𝑆𝑋ℎ
2  𝑆𝑍ℎ

2  𝑆𝑃ℎ
2  𝜌𝑋𝑍ℎ 𝜌𝑋𝑃ℎ 𝜌𝑍𝑃ℎ 𝑆𝑇ℎ

2  𝑆𝑉ℎ
2  

 1 450.2457 450.5318 227.9771 228.2253 0.2516162 0.9914689 -0.7774522 -0.7745486 28.0513 23.65488 

 2 49.75684 49.80721 189.9124 190.5358 0.250988 0.9868945 -0.7948887 -0.7876593 20.89942 26.79222 

I 3 919.5245 919.5174 558.2454 559.4888 0.250825 0.9957027 -0.8061185 -0.8078304 23.42054 27.01627 

 4 500.4659 250.9384 63.43051 18.27174 0.2388948 0.8660414 -0.7593847 -0.7101635 25.25684 27.85556 

 1 188.9035 4.543181 1094471 926.4621 0.0631675 0.8171398 -0.4743876 -0.4700577 24.72743 24.8088 

 2 2502.012 61.90972 187408859 76639.99 0.1684866 0.7944946 -0.3406924 -0.4228761 24.91892 25.14334 

I 3 1120.151 20.51225 8526375 2937.237 0.2190176 0.834325 -0.4254019 -0.4941943 25.03186 25.10566 

 4 1757.061 33.79095 24712119 11588.58 0.7043786 0.6559524 -0.4738365 -0.4650428 25.29474 24.9028 

 5 6175.008 97.12205 817189958 145353 0.2231698 0.8679977 -0.2992682 -0.3562166 24.74669 25.73482 

 6 356.2095 4.833472 3189400 850.8079 0.06043503 0.7237861 -0.6026504 -0.5888455 18.97865 24.87666 

 1 8.558333 2.363715 3.604106 0.5254207 0.250087 0.7239923 -0.6367863 -0.7829324 26.04856 22.12586 

II 2 13.71839 3.763615 3.301741 0.7556429 0.2487542 0.3619965 -0.203882 -0.706301 20.19661 22.05487 

http://www.worldometer.info/
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Table 3: PREs of different estimators using the three-stage optional RRT model when 𝑡ℎ = 0.3 and 𝑓ℎ = 0.2 

for population I 

 

Estimator 

 𝜓ℎ = 0  𝜓ℎ = 0.2  𝜓ℎ = 0.8  𝜓ℎ = 1.0 

without ME with ME without ME with ME without ME with ME without ME with ME 

𝑡0 100 100 100 100 100 100 100 100 

𝑡𝑅  138.1604 138.1412 138.2786 138.2180 138.5062 138.4569 138.6734 138.6521 

𝑡𝐸𝑅 155.1993 155.2676 155.07100 155.2335 154.6867 155.1298 154.5588 155.0948 

𝑡1  167.4635 158.827 167.3225 158.7900 166.9008 158.6784 166.7607 158.6410 

𝑡2 178.3399 167.2935 178.1837 167.2523 177.7169 167.1279 177.5619 167.0863 

𝑡3 176.4973 165.8899 176.3414 165.8476 175.8758 165.7202 175.7213 165.6777 

𝑡4 137.9604 135.1127 137.8586 135.0886 137.5553 135.0167 137.4549 134.9929 

𝑡5 178.4015 167.3417 178.2453 167.3004 177.7784 167.1761 177.6234 167.1345 

𝑡6 175.4756 165.1065 175.3205 165.064 174.8571 164.9364 174.7034 164.8937 

𝑡7 175.5834 165.1911 175.4282 165.1486 174.9646 165.0209 174.8108 164.9783 

𝑡8 178.1468 167.1437 177.9907 167.1024 177.5243 166.978 177.3695 166.9363 

𝑡9 176.2024 165.6364 176.0481 165.5952 175.5871 165.4710 175.4341 165.4295 

𝑡10 178.1546 167.1498 177.9985 167.1085 177.5322 166.9841 177.3773 166.9425 

𝑡11 176.2278 165.6563 176.0736 165.6151 175.6127 165.491 175.4596 165.4495 

 

Table 4 shows PREs for population II at different values of 𝜓ℎ. The values of PREs are observed to decrease with 
increase in the sensitivity level of the survey question in both cases for without and with measurement errors. However, 

PREs for the ratio estimator are observed to increase with increase in the sensitivity level of the survey question. For 

example, in the case for with measurement errors, the value of PRE for  𝑡5  is 152.0858 when  𝜓ℎ = 0 and decreases to 

152.0848 when 𝜓ℎ = 0.8. The proposed estimators perform better than other existing estimators of the finite population 

mean in both cases for without and with measurement errors. Generally, the values of PREs for the proposed estimators 

declines in the presence of measurement errors. 

 

Table 4: PREs of different estimators using the three-stage optional RRT model when 𝑡ℎ = 0.3 and 𝑓ℎ = 0.2  

for population II 

 

Estimator 

 𝜓ℎ = 0  𝜓ℎ = 0.2  𝜓ℎ = 0.8  𝜓ℎ = 1.0 

without ME with ME without ME with ME without ME with ME without ME with ME 

𝑡0 100 100 100 100 100 100 100 100 

𝑡𝑅  137.7421 137.6962 137.7424 137.6965 137.7435 137.6976 137.7439 137.6980 

𝑡𝐸𝑅 149.0357 148.9713 149.0353 148.9709 149.0342 148.9698 149.0338 148.9694 

𝑡1  152.0858 152.0160 152.0856 152.0157 152.0848 152.015 152.0846 152.0148 



Pak.j.stat.oper.res.  Vol.19  No. 1 2023 pp 131-144  DOI: http://dx.doi.org/10.18187/pjsor.v19i1.3929 

 

 
Estimation of Population Mean Using Three-Stage Optional RRT Model in the Presence of Measurement Errors under Stratified Two-Phase Sampling 142 

 

𝑡2 152.0617 151.9918 152.0614 151.9916 152.0607 151.9909 152.0604 151.9906 

𝑡3 152.085 152.0151 152.0847 152.0149 152.0840 152.0142 152.0838 152.0139 

𝑡4 137.3917 137.3464 137.3916 137.3462 137.39110 137.3458 137.3909 137.3456 

𝑡5 152.0858 152.0160 152.0856 152.0157 152.0848 152.0150 152.0846 152.0148 

𝑡6 152.0831 152.0132 152.0828 152.0130 152.0821 152.0123 152.0819 152.0120 

𝑡7 149.7169 149.6512 149.7166 149.651 149.7158 149.6502 149.7155 149.6499 

𝑡8 152.0847 152.0149 152.0845 152.0146 152.0838 152.0139 152.0835 152.0137 

𝑡9 150.6822 150.6149 150.6820 150.6146 150.6812 150.6139 150.6810 150.6137 

𝑡10 152.0820 152.0121 152.0817 152.0119 152.0810 152.0112 152.0808 152.0109 

𝑡11 150.9761 150.9082 150.9758 150.908 150.9751 150.9072 150.9748 150.9070 

 

Table 5 shows the PREs for population III at different values of sensitivity levels of the survey question. The ratio and 

exponential ratio-type estimators’ underperforms compared to ordinary mean estimator in the presence of 

measurement errors. However, the ratio estimator performs better than exponential ratio estimator in the case of 

without measurement errors and vice-versa in the presence of measurement errors.  The proposed generalized class of 

estimators perform better than the ratio and exponential ratio estimators in both cases for without and with 

measurement errors at different values of 𝜓ℎ. The values of PREs decrease with an increase in sensitivity level in the 

case for without measurement errors. For example, for 𝑡5 the value of PRE is 117.8663 when  𝜓ℎ = 0.2 and decreases 

to 117.2759 when and 𝜓ℎ = 0.8. Furthermore, the values of PRE increases with increase in the values of  𝜓ℎ in the 

presence of measurement errors.  
 

Table 5: PREs of different estimators using the three-stage RRT model when 𝑡ℎ = 0.3 and 𝑓ℎ = 0.2 for 

population III 

 

Estimator 

 𝜓ℎ = 0  𝜓ℎ = 0.2  𝜓ℎ = 0.8  𝜓ℎ = 1.0 

without ME with ME without ME with ME without ME with ME without ME with ME 

𝑡0 100 100 100 100 100 100 100 100 

𝑡𝑅  121.1715 96.88974 121.0878 96.89571 120.8350 96.91333 120.7506 96.91912 

𝑡𝐸𝑅 117.9163 99.42842 117.723 99.43119 117.1757 99.43935 117.0033 99.44202 

𝑡1  118.0769 100.2539 117.8663 100.2553 117.2759 100.2595 117.0916 100.2608 

𝑡2 117.7667 100.2492 117.5608 100.2506 116.9834 100.2547 116.8032 100.256 

𝑡3 114.4735 100.1976 114.3156 100.1987 113.8722 100.2020 113.7337 100.2030 

𝑡4 103.7375 100.0071 103.7210 100.0072 103.6748 100.0075 103.6604 100.0076 

𝑡5 118.0769 100.2539 117.8663 100.2553 117.2759 100.2595 117.0916 100.2608 

𝑡6 114.5483 100.1988 114.3876 100.1999 113.9364 100.2031 113.7955 100.2041 

𝑡7 115.2415 100.2099 115.0694 100.211 114.5869 100.2143 114.4364 100.2154 

𝑡8 116.536 100.2303 116.3481 100.2316 115.8207 100.2353 115.6561 100.2365 
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𝑡9 113.0928 100.1751 112.9505 100.1760 112.5512 100.1787 112.4266 100.1796 

𝑡10 117.1218 100.2394 116.9258 100.2407 116.3757 100.2446 116.2040 100.2459 

𝑡11 114.3631 100.1959 114.2061 100.1969 113.7654 100.2001 113.6277 100.2011 

 

7. Concluding Remarks 

In this paper, a generalized class of estimators is proposed using the three stage optional RRT model under 

measurement errors. The proposed estimators are based on a mixture of auxiliary attribute and variable. Using both 

simulated and real data, the theoretical properties of biases and MSEs for the proposed estimators are investigated 

theoretically and numerically. According to the numerical analysis, efficiencies of estimators of the finite population 

mean decreases as the sensitivity level of the survey question increases in both cases for without and with measurement 

errors. Furthermore, the use of the three stage optional RRT model reduces impact of the sensitivity level of the survey 

question on efficiencies of estimators of population mean. The proposed estimator outperforms the ordinary, usual 
ratio, and exponential ratio-type estimators. As a result, survey practitioners are encouraged to use the proposed 

estimators when measurement errors are present in a survey. 
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