JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE/BSc BIOLOGICAL SCIENCE
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2022/2023
REGULAR, MAIN CAMPUS

COURSE CODE: SPB 9101
COURSE TITLE: PHYSICAL CHEMISTRY/BASIC CHEMISTRY 1
EXAM VENUE: STREAM: BED SCI/BSC BIO
DATE: EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Useful data
$\mathrm{R}=0.0821 \mathrm{~L}$ atm. $\mathrm{K}-1 \mathrm{~mol}-1$
Molar mass $\mathrm{N}=14 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{O}=16 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{C}=12 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{H}=1.01 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass of $\mathrm{He}=4 \mathrm{~g} . \mathrm{mol}^{-1}$
INSTRUCTIONS: Answer Question 1 and any other TWO questions

QUESTION ONE (30 marks)

a. Write the equilibrium constant expression for a simple gas phase isomerization reaction involving the conversion of cis-2-butene to trans-2-butene (2 marks)
b. Derive the Van der Waal's equation and explain its significance (4 marks)
c. If the volume of a sample of helium is 0.0227 M 3 at 273 K and $1.00 \times 10^{5} \mathrm{~Pa}$, what is its volume at 293 K and $1.04 \times 10^{5} \mathrm{~Pa}$ (4 marks)
d. $50 \mathrm{~g}(0.146$ mole $)$ of solute sugar is placed in $117 \mathrm{~g}(6.5 \mathrm{~mole})$ of the solvent water. The vapor pressure for pure water at $25^{\circ} \mathrm{C}$ is 23.8 torr.
i. What is the mole fraction of sugar in water 2 marks
ii. What is the molality of sugar in water 3 marks
iii. What is the molarity of sugar in water 3 marks
iv. Calculate the vapor pressure depression 3 marks
v. Calculate the boiling point elevation (the boiling point elevation constant for water is $0.512{ }^{\circ} \mathrm{C} /$ molal) 3 marks
vi. Calculate the freezing point depression (the freezing point depression constant for water is $1.86{ }^{\circ} \mathrm{C} / \mathrm{molal} 3$ marks
vii. Calculate the osmotic pressure change 3 marks

QUESTION TWO (20 marks)
a. Balance the following chemical equations.
$\begin{array}{ll}\text { i. } & \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}--->\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \\ \text { ii. } & \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KI}---->\mathrm{PbI}_{2}+\mathrm{KNO}_{3}\end{array}$
b. Define the term 'Colligative Properties' and describe four types of colligative properties (5 marks)
c. The pressure of a $0.0239 \mathrm{M}^{3}$ sample of N 2 is $1.02 \times 10^{5} \mathrm{~Pa}$. The gas is compressed to a volume of $0.0210 \mathrm{~m}^{3}$ while the temperature remains constant at 293 K . What is the new pressure of the gas (3 marks)
d. Zinc reacts with hydrochloric acid according to the equation;

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

What mass of zinc is required to react completely with $30.0 \mathrm{~cm}^{3} 1.00 \mathrm{~m}$ hydrochloric acid?
(3 marks)
e. Write the oxidation and reduction half reactions for the following reaction $\mathrm{Zn}(\mathrm{s})+$ $\mathrm{Cu}^{2+}(\mathrm{aq})===>\mathrm{Zn}^{2+}+\mathrm{Cu}(\mathrm{s})$
[2 marks]
f. Calculate the volume occupied by one mole of CO 2 at 300 K and 1 bar pressure. [4 marks]

QUESTION THREE (20 marks)

a. A quantity of cis-2-butene is added to a 2 liter flask and heated to 400 Oc for 2 years. The concentration of trans-2-butene was then determined to be 0.5 M . What is the concentration of cis-2-butene in the flask (3 marks)
b. h) Abottle of metal hydrate $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is mixed with an unknown amount of KCl . In order to find the purity of the $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, we heat 9.51 g of the metal hydrate mixture to remove water from the sample. After heating, the sample has a reduced mass of 9.14 g .
i) calculate change in sample mass (1 mark)
ii) Calculate the moles of evaporated water (1 mark)
iii) calculate moles of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (1 mark)
iv) calculate mass of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ in grams (1 mark)
v) calculate the mass percent of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the original sample (1 mark)
c. State Dalton's Law of Partial Pressures 2 marks
d. Discuss any five factors that affect the position of a chemical equilibrium. [5 marks]
e. Derive the Nernst equation and explain the terms in it. [5 marks]

QUESTION FOUR (20 marks)

a. Define the following terms;
i. Physical chemistry [2 marks]
ii. Grahams law of effusion [2 marks]
b. Differentiate between an ideal gas and real gas.
c. The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form $\mathrm{COCl}_{2} \mathrm{~g}$ at $74^{\circ} \mathrm{C}$ are $\mathrm{CO}=0.012 \mathrm{M}, \mathrm{Cl}_{2}=0.054 \mathrm{M}$ and $\mathrm{COCl}_{2}=0.14 \mathrm{M}$. Calculate the equilibrium constants K_{c} and K_{p} (4 marks)
d. Consider the following equilibrium process between dinitrogen tetrafluorie and nitrogen difluoride;

$$
\mathrm{N}_{2} \mathrm{~F}_{4}(g) \rightleftharpoons 2 \mathrm{NF}_{2}(g) \quad \Delta H^{\circ}=38.5 \mathrm{~kJ}
$$

Predict the changes in the equilibrium if;
i. The reacting mixture is heated at constant volume [2 marks]
ii. $\quad \mathrm{NF}_{2}$ gas is removed from the reacting mixture at constant temperature and volume [2 marks]
iii. The pressure on the reacting mixture is decreased at constant temperature [2 marks]
iv. An inert gas, such as helium is added to the reacting mixture at constant volume and temperature [2 marks]

QUESTION FIVE (20 marks)

a. Using relevant examples, distinguish between a physical and chemical equilibria (4 marks)
b. Briefly describe any three types chemical reactions.
c. A mixture of $0.500 \mathrm{~mol} \mathrm{H}_{2}$ and $0.500 \mathrm{~mol}_{2}$ was placed in a $1.00-\mathrm{L}$ stainless steel flask at $430{ }^{\circ} \mathrm{C}$. The equilibrium constant Kc for the reaction is 54.3 at this temperature. Calculate the concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI at equilibrium. [6 marks]

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

d. Explain the terms;
i) Redox reactions (1 mark)
ii) oxidation (1 mark)
iii) reduction (1 mark)
e. Determine the oxidation number of each element in these compounds
i) $\quad \mathrm{CaO}(1$ mark $)$
ii) $\quad \mathrm{KNO}_{3}(1$ mark)
iii) $\mathrm{NaHSO}_{4}(1$ mark $)$
iv) $\mathrm{CaCO}_{3}(1$ mark)

