

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION

SCIENCE WITH IT

2022/2023 ACADEMIC YEAR 4th YEAR 1ST SEMESTER

MAIN

REGULAR

COURSE CODE: SPB 9429

COURSE TITLE: DIGITAL ELECTRONICS II

EXAM VENUE: STREAM: (BED SCI.)

DATE: EXAM SESSION:

TIME: 2 HOURS

Instructions:

- 1. Answer question 1 (compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE

- a. Define a sequential logic circuit and give an example of one. (3 marks)
- b. Draw the truth table of a full subtractor circuit hence write down the logic function of the Difference and Borrow in outputs (4 marks)
- c. Draw the schematic block diagram of a 4-bit multiplier (3 marks)
- d. Define a magnitude comparator (2 marks)
- e. Differentiate between;
 - i) synchronous and asynchronous inputs;

	ii) level-triggered and edge-triggered flip-flops					(4 marks)		
f.	A series counter has a modulus of 32,768. If all the flip flops used to construct the							
	counte	counter are identical and each has a propagation delay of 0.02 seconds. Determine the						
	propag	gation	delay	of	the	counter		
	(3 marks)							
g.	Briefly							
	i)	set-up time and ho	old time;					
	ii)	propagation delay	;					
	iii)	maximum clock f	requency.			(4 marks)		
h.	i) What is meant by the 'race problem' in flip-flops?				(2 marks)			
	ii) Explain how a master-slave flip flop configuration helps in solving this problem							
						(3 marks)		
i.	Explai	n why Shift registe	rs are mainly ma	de of D-type fl	ip flops.	(2 marks)		

SECTION B

QUESTION TWO

- a. Using well illustrated logic circuit diagrams, explain the operations of the following flip flops.
 - basic R-S flip-flop having active LOW inputs, (include its truth table). (8 marks)
 - ii) Clocked J-K flip-flop (6 marks)
 - iii) Master- Slave flip flop (address the race-problem solution) (6marks)

QUESTION THREE

- a. Construct the truth table of a full subtractor circuit and from the table write down the Boolean expressions for the Difference and Borrow out outputs (4 marks)
- b. Obtain the simplified versions of the Boolean expressions obtained in (a) above hence draw the hardware of the full subtractor circuit.
 (6 marks)

c.	Design a 16-to-1 multiplexer using two 8-to-1 multiplexers having an active L	OW ENABLE
	input. Fully explain the working mechanism of your design	(10 marks)

QUESTION FOUR

a. b.	Outline any three differences between a ripple counter and a parallel counter. Design a 4-bit asynchronous counter and fully explain its working mechanism				
	the tim	(7 marks)			
c.	Briefly	. ,			
	i)	Decade counter	(5 marks)		
	ii)	BCD counter	(5 marks)		
QUES	STION 1	FIVE			
a.	Define a shift register.		(2 marks)		
b.	b. Briefly describe the following types of shift registers citing their unic make them perform their tasks				
	i)	Universal shift register	(3 marks)		
	ii)	Bidirectional shift register	(3		
		marks)			
c.	c. Using well illustrated circuit diagrams, fully explain the operation of th		owing types		
	of shift registers				
	i)	Serial-In Serial Out shift registers	(6		
		marks)			
	ii)	Serial-In parallel Out shift registers	(6 marks)		