

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

2ND YEAR 2ND SEMESTER 2022/2023

MAIN REGULAR

COURSE CODE: SPB 9224

COURSE TITLE: MATHEMATICAL METHODS FOR PHYSICS II

EXAM VENUE:

STREAM: (BED SCI)

DATE:

EXAM SESSION:

TIME: 2:00HRS

Instructions:

- 1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room

SECTION A (COMPULSORY)

Question 1 (30 marks)

(a) Express in polar form the complex number
$$1 - i$$
. (3 marks)
(b) Find the total differential of $z(x, y) = 5x^3 - 4x^{2y} + 3y^3$. (2 marks)
(c) Use Cramer's rule to solve for α and β in the following equations:
 $\alpha + 2\beta = 1$
 $-\alpha + 3\beta = 4$ (3 marks)
(d) For each of the vectors $\vec{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\vec{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$, investigate whether the vector is an eigenvector of the matrix $A = \begin{pmatrix} \theta - 2 \\ 2 - 4 \end{pmatrix}$. (4 marks)
(e) Given that $f(x, y) = x^3y - e^{xy}$, find f_{xy} . (3 marks)
(f) Solve for y in the ordinary differential equation
 $\frac{dy}{dx} = 3x - \frac{1}{x}y$
given that when $x = 2, y = 3$. (3 marks)
(g) Distinguish between Fourier series and Fourier transform, and give physical situations where each may be applied. (4 marks)
(h) Find the inner product of the vectors $\vec{a} = (3i, 1 - i, 2 + 3i, 1 + 2i), \vec{b} = (-1, 1 + 2i, 3 - i, i).$ (2 marks)
(i) Evaluate the determinant of the matrix

(1) Evaluate the determinant of the matrix

$$B = \begin{pmatrix} \mathbf{9} \cdot 2 \\ \mathbf{7} \cdot \mathbf{3} \\ \mathbf{3} \cdot 1 \end{pmatrix}.$$
 (4 marks)
een an isolated singularity and a pole. (2 marks)

(j) Distinguish between an isolated singularity and a pole.

SECTION B (Attempt any TWO questions from this section)

Question 2 (20 marks)

(a) Determine the partial second order derivatives of $f(x, y) = x\cos y + ye^x$, hence show that the second partial derivative is a commutative operation. (8 marks) (b) Show that the function $f(z) = e^{-y} cos x + i e^{-y} sin x$ satisfies the Cauchy-Riemann conditions, hence find f'(z). (6 marks)

(c) Find the linearization of $f(x, y) = x^2 - 2xy + \frac{1}{4}y^2 + 3at$ the point (1, 2). (6 marks)

Question 3 (20 marks)

(a) For the matrix

$$A = \begin{pmatrix} \theta & 2 \\ \mathbf{2} \\ \mathbf{3} \end{pmatrix},$$
(i) find the eigenvalues of A.
(ii) hence find a matrix *P* that diagonalizes *A*.
(b) The equation of motion for a mass oscillating at the end of a spring is given by
$$m \frac{d^2 y}{dt^2} = -ky$$
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(b) The equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mass oscillating at the end of a spring is given by
(c) the equation of motion for a mas

where *m* and *k* are constants. Solve this equation for *y* (you may take $k/m = \omega^2$). (4 marks)

Question 4 (20 marks)

(a) For the set S of basis vectors

$$\vec{A} = [0,2,0,0], \vec{B} = [3, -4,0,0], \vec{C} = [1,2,3,4]$$

`

use the Gram-Schmidt process to transform S to an orthonormal basis for \mathbb{R}^4 .

(9 marks)

(b) (i) Describe a physical quantity that can be represented by the non-periodic function

$$f(x) = \begin{cases} 1, -1 < x < 1\\ 0, |x| > 1 \end{cases}.$$
(2)

marks)

(ii) Represent the function in (b)(i) above as a Fourier integral. (9 marks)

Question 5 (20 marks)

(a) Find the determinant of the matrix

i], [1,0][-2, *i*]}, determine $\langle \vec{u}, \vec{v} \rangle$.

9 9 (6 marks) **A**-1

(b) Solve the following system of equations using Cramer's rule.

$$x_1 + x_2 + x_3 = 3$$

$$3x_2 - x_3 = -2$$

$$2x_1 - x_3 = 0$$
 (10 marks)
(c) For the vectors \vec{u} and \vec{v} defined by $\vec{u} = \{[-1,0], [1,2i], [3, -i][0,i]\}$ and $\vec{v} = \{[4, -2i], [2, -i], [1,0][-2,i]\}$, determine $\langle \vec{u}, \vec{v} \rangle$.
(4 marks)