1

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL MATHEMATICS AND ACTUARIAL SCIENCES FOURTH YEAR FIRST SEMESTER EXAMINATIONS **UNIVERSITY EXAMINATIONS: 2021/2022 ACADEMIC YEAR**

SCH 405: SYNTHETIC ORGANIC CHEMISTRY SPECIAL/RESIT EXAMINATIONS

ANSWER ALL QUESTIONS IN SECTION A AND ANY TWO QUESTIONS IN SECTION B **SECTION A:**

ANSWER ALL QUESTIONS

Question 1 (30 Marks)

- Define the following terms: a)
 - Retrosynthesis i.
 - ii. Disconnection approach
 - iii. Synthon
 - Reactive intermediate iv.
 - Convergent synthesis v.
- b) What is the significance of "Organic Synthesis." Discuss any FOUR counts. (5 marks)
- c) Using a chemical equation, briefly explain the term "regioselectivity" (5 marks) Distinguish between the following terms; d) (6 marks) (i) Convergent and divergnent synthesis
 - (ii) Carbocation and carbine
- e) What are the limitations of organic synthesis?

SECTION B (40 MARKS): ANSWER ANY TWO QUESTIONS FROM THIS SECTION **EACH QUESTION CARRIES 20 MARKS**

Question 2 (20 Marks)

Dehydration of primary alcohols is a suitable synthesis procedure for symmetrical a) ethers. The reaction follows SN² mechanism. Illustrate using the following reaction. (5 marks)

Which of the alkyl halides given below would you expect to react more rapidly by an b) SN² mechanism? Explain your answer. (6 marks)

> (I) CH₃CH₂CH₂CH₂Br CH₃CH₂CHCH₃ VS CH₃CH₂CH₂Cl CH₃CH₂CH₂Br (II)VS

(10 marks)

(4 marks)

c)	With the aid of energy-reaction path diagrams, explain why the energy profile of SN^2 has only one transition state while SN^1 has two transition states.	(6 marks)
d)	Designing of a synthetic procedure is intellectually challenging. Explain.	(3 marks)
Question 3 (20 Marks)		
a) 1	explain each of the following observations.	(10 marks)
i	Regiospecificity of hydrogenation of alkenes fails without a peroxide in the reaction matrix	
ii	P-2 catalyst is preferred in place of Nickel metal	
iii	Acetylene is synthesizable from calcium carbonate	
iv	Proton of acetylene is easily replaced by a metal	
V.	Organic synthesis reactions are based on functional group transformation	
b) Outline the synthesis of 1-bromobutane from 1,2-dibromoethane and ethylbromide. Show all the necessary steps and the reaction mechanisms involved . (10 ma		
uestion 4 (20 Marks)		

<u>Question 4 (20 Marks)</u> a) Give the structures and names for compounds A-E.

> $\begin{array}{c} & \\ \mathsf{CH}_3\mathsf{CH}_2\mathsf{.CH}\text{-}\mathsf{C}\mathsf{-}\mathsf{O}\mathsf{H} \\ & \\ \mathsf{H}_3 \\ & \\ \mathsf{H}^+ \end{array} \xrightarrow{\mathsf{CH}_3\mathsf{C}\mathsf{H}_2\mathsf{C}\mathsf{H}_3\mathsf{C}\mathsf{H$ CH₃CH₂OH $\mathbf{A}\left[\mathrm{C}_{7}\mathrm{H}_{14}\mathrm{O}_{2}\right]$ 1. CH_3CH_2MgBr 2. H_3O^+ $\mathbf{I}^{\mathrm{OH}_2}$ CH₃CH₂CH-C-CH₂CH₃ H₂SO₄ 25 ⁰C **B** $[C_9H_{18}] + C [C_9H_{18}]$ ĊH₂CH₃ (Minor) (Major) 1. Zn, H_3O^+ 2. O₃ $E [C_4H_8O] + D [C_5H_{10}O]$ Ketone Ketone

(10 marks)

b) Grignard synthesis is a very versatile reaction route for the synthesis of alcohols. Explain using a chemical reaction. (5 marks)

c) Outline TWO methods for preparing isopropyl methyl ether by Willamson synthesis. (5 marks)

Question 5 (20 Marks)

- a) Briefly discuss the synthetic pathway of any **<u>TWO</u>** of the following compounds. (20 marks)
 - (i) Quinines
 - (ii) Nicotine
 - (iii) Chloroquine
 - (iv) Pyrethrins

E *******N********D*!!!!!!!