JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE, AGRICULTURAL EXTENSION (AGED)
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2021/2020
RESIT

COURSE CODE: SPB 9101

COURSE TITLE: PHYSICAL CHEMISTRY/BASIC CHEMISTRY III

EXAM VENUE: STREAM: (AGED)

DATE: EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Useful data

$\mathrm{R}=0.0821 \mathrm{~L}$ atm. $\mathrm{K}-1 \mathrm{~mol}-1$
Molar mass $\mathrm{N}=14 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass $\mathrm{O}=16 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Molar mass $\mathrm{C}=12 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Molar mass $\mathrm{H}=1.01 \mathrm{~g} . \mathrm{mol}^{-1}$
Molar mass of $\mathrm{He}=4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$

QUESTION ONE (30 marks)

a. State Boyle's law 2 marks
b. If the volume of a sample of helium is 0.0227 M 3 at 273 K and $1.00 \times 10^{5} \mathrm{~Pa}$, what is its volume at 293 K and $1.04 \times 10^{5} \mathrm{~Pa}$ (4 marks)
c. Explain what is meant by, a stoichiometric equation (2 marks)
d. Zinc reacts with hydrochloric acid according to the equation;

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathbf{H}_{2}(\mathrm{~g})
$$

What mass of zinc is required to react completely with $30.0 \mathrm{~cm}^{3} 1.00 \mathrm{~m}$ hydrochloric acid?
(4 marks)
e. Explain the terms; (3 marks)
i. Redox reactions
ii. oxidation
iii. reduction
f. Determine the oxidation number of each element in these compounds (6 marks)
i. CaO
ii. KNO_{3}
iii. NaHSO_{4}
vi. CaCO_{3}
v. N_{2}
vi. $\mathrm{H}_{2} \mathrm{O}$
g. Use the oxidation number method to balance the following equations (4 marks)
i) $\mathrm{Al}+\mathrm{H}_{2} \mathrm{SO}_{4} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2}$
ii) $\mathrm{PbS}+\mathrm{O}_{2} \quad \mathrm{PbO}+\mathrm{SO}_{2}$
h. Define the term 'Colligative Properties' and describe four types of colligative properties (5 marks)

QUESTION TWO (20 marks)

a. State Charles law (1 marks)
b. The pressure of a $0.0239 \mathrm{M}^{3}$ sample of N 2 is $1.02 \times 10^{5} \mathrm{~Pa}$. The gas is compressed to a volume of $0.0210 \mathrm{~m}^{3}$ while the temperature remains constant at 293 K . What is the new pressure of the gas (5 marks)
c. Using relevant examples, distinguish between a physical and chemical equilibria (5 marks)
d. Write the equilibrium constant expression for a simple gas phase isomerization reaction involving the conversion of cis-2-butene to trans-2-butene (3 marks)
e. The equilibrium concentrations for the reaction between carbon monoxide and molecular chlorine to form $\mathrm{COCl}_{2} \mathrm{~g}$ at $74^{\circ} \mathrm{C}$ are $\mathrm{CO}=0.012 \mathrm{M}, \mathrm{Cl}_{2}=0.054 \mathrm{M}$ and $\mathrm{COCl}_{2}=0.14 \mathrm{M}$. Calculate the equilibrium constants K_{c} and K_{p} (6 marks)

QUESTION THREE (20 marks)

a. $50 \mathrm{~g}(0.146$ mole $)$ of solute sugar is placed in $117 \mathrm{~g}(6.5 \mathrm{~mole})$ of the solvent water. The vapor pressure for pure water at $25^{\circ} \mathrm{C}$ is 23.8 torr.
i. What is the mole fraction of sugar in water (2 marks)
ii. What is the molality of sugar in water (3 marks)
iii. What is the molarity of sugar in water (3 marks)
iv. Calculate the vapor pressure depression (3 marks)
v. Calculate the boiling point elevation (the boiling point elevation constant for water is $0.512 \mathrm{oC} / \mathrm{molal}$ (3 marks)
vi. Calculate the freezing point depression (3 marks)
vii. Calculate the osmotic pressure change (3 marks)

QUESTION FOUR (20 marks)

a. Write the oxidation and reduction half reactions for the following reaction $\mathrm{Zn}(\mathrm{s})$

$$
+\mathrm{Cu}^{2+}(\mathrm{aq})====\mathrm{Zn}^{2+}+\mathrm{Cu}(\mathrm{~s})
$$

b. Calculate the volume occupied by one mole of CO 2 at 300 K and 1 bar pressure. (4 marks)
c. Balance the following chemical equations.
i. $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}--->\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2}$
ii. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{KI}---->\mathrm{PbI}_{2}+\mathrm{KNO}_{3}$ [3 marks]
d. Briefly describe any three types chemical reactions.
e. A quantity of cis-2-butene is added to a 2 liter flask and heated to 400 Oc for 2 years. The concentration of trans-2-butene was then determined to be 0.5 M . What is the concentration of cis-2-butene in the flask (3 marks)
f. Abottle of metal hydrate $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ is mixed with an unknown amount of KCl . In order to find the purity of the $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, we heat 9.51 g of the metal hydrate mixture to remove water from the sample. After heating, the sample has a reduced mass of 9.14 g .
i) calculate change in sample mass (1 mark)
ii) Calculate the moles of evaporated water (1 mark)
iii) calculate moles of $\mathrm{BaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$ (1 mark)
iv) calculate mass of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in grams (1 mark)
v) calculate the mass percent of $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the original sample (1 mark)

QUESTION FIVE (20 marks)

a). State Dalton's Law of Partial Pressures (2 marks)
b).Discuss any THREE factors that affect the position of a chemical equilibrium. [6 marks]
c).Write the expression for Nernst equation and explain the terms in it [4 marks]
d).Define the following terms; [4 marks]
i. Physical chemistry.
ii. Grahams law of effusion
e).Differentiate between an ideal gas and real gas.[4 marks]

