

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)

MAIN

SPECIAL RESITS EXAMINATIONS FEB 2022

COURSE CODE: SPH 307

COURSE TITLE: INTRODUCTION TO DIGITAL ELECTRONICS

EXAM VENUE:

STREAM: EDUCATION

DATE:

EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 MARKS)

a.	Define the term doping as used in semiconductor theory	[2 mark]
b.	Distinguish between extrinsic and intrinsic semiconductors	[2 marks]
c.	Explain the basic working principle of a transistor	[4 marks]
d.	With the aid of a well labelled diagram, explain the working mechanism of	of an operational
	amplifier	[4 marks]
e.	An NPN Transistor has a DC current gain, β , value of 200. Calculate the	e base current Ib
	required to switch a resistive load of 4mA.	[3 marks]
f.	An NPN Transistor has a DC base bias voltage, V _b of 10v and an input	base resistor, R _b
	of $100k\Omega$. What will be the value of the base current into the transistor.	[3 marks]
g.	Draw a fully well labeled Output Characteristics Curves for a Typical Bip	olar Transistor
		[4 marks]
h.	Define the term oscillator and give any three of its applications	[4 marks]
i.	Write down the steps involved in analyzing an OP-Amp circuit	[4 marks]

QUESTION TWO (20 MARKS)

a.	With focus to band theory of solids, distinguish between conductors,	semiconductor	s and
	solids	[8 marks]	

- b. Using well illustrated bonding diagrams, explain the formation of N-type and P-type semiconductors [6 marks]
- c. Draw the Voltage-Current characteristics curve of PN junction diode both in reverse and forward biasing modes. With focus to charge transport, explain the shape of the curve [6 marks]

QUESTION THREE (20 MARKS)

a.	Define a transistor	[2 marks]		
b.	Draw the circuit diagram of NPN transistor in a common base configuration	and explain		
	its working principle	[4 marks]		
c.	Obtain the relation between α and β parameters for a transistor	[4 marks]		
d.	Explain the working of a transistor as an amplifier	[6 marks]		
e.	Biasing of a transistor can make it operate in active region, saturation region	and cut-off		
	regions. With the aid of well labelled diagrams, explain the conditions of operation and			
	application of each case.	[4 marks]		
	••	. ,		

QUESTION FOUR (20 MARKS)

a.	Define an operational amplifier and draw its standard circuit						[2 marks]				
b.	Design an	operational	amplifier	with	negative	feedback	and	fully	explain	its	working
	principle.					[3 marks]					

- c. With the aid of well labelled circuit diagrams and with supportive voltage equations, explain the operation of the following types of op amps
 - i) Voltage follower
 - ii) Inverting amplifier
 - iii) Differential amplifier

QUESTION FIVE (20 MARKS)

- a. There are two major types of oscillators, the feedback oscillator and the relaxation oscillator. Distinguish between the two. [4 marks]
- b. Using well labelled circuit diagrams, explain the operation of the following feedback RC oscillators
 - i) Wien-bridge oscillator

[5 marks] [5 marks]

- ii) Phase-Shift oscillator
- c. One of the relaxation oscillators is the triangular- wave oscillator. Explain its working mechanism [6 marks]

[5 marks] [5 marks] [5 marks]