JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

 UNIVERSITY EXAMINATION FOR THE DEGREE OF MASTERS OF

 UNIVERSITY EXAMINATION FOR THE DEGREE OF MASTERS OF SCIENCE IN PHYSICS

MAIN

REGULAR

COURSE CODE: SPB 9313
COURSE TITLE: THERMODYNAMICS
EXAM VENUE:

DATE:
TIME: 3:00HRS

1. Instructions: Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Answer Question 1 (compulsory) and ANY other 2 questions
3. Candidates are advised not to write on the question paper.
4. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question 1 (30 Marks)

a. Give the definitions of an isolated system
b. State the Second law of thermodynamics
c. Derive the expression for the Fermi-Dirac distribution. Explain the meaning of all the symbols you write down.
d. Show that $(\partial \mathrm{S} / \partial \mathrm{p})_{\mathrm{T}}=-(\partial \mathrm{V} / \partial \mathrm{T})_{\mathrm{p}}$
e. In a gas thermometer, the pressure needed to fix the volume of 0.80 g of Helium at 0.40 L is 120.3 kPa . What is the temperature?
f. Define State fuctions
g. Consider a tank of gas of volume V containing N gas molecules with a total energy E . Write down the corresponding the three conjugate variables for each
h. By definition, Helmholtz function $\mathrm{f}=\mathrm{u}-\mathrm{Ts}$. Show that $(\partial \mathrm{p} / \partial \mathrm{T})_{\mathrm{v}}=(\partial \mathrm{s} / \partial \mathrm{v})_{\mathrm{T}} \quad$ [5marks]

Question 2 [20 marks]

Discuss the following thermodynamic processes
a. Isothermal process [5marks]
b. Isobaric Process
[5marks]
c. Isochoric Process
[5marks]
d. Isobaric Process

Question 3 [20 marks]

a. Show that for an ideal gas obeying $p v=R T, u(T, v)=u(T)$, and, $c_{v}(T, v)=c_{v}(T) \quad$ [5marks]
b. show that $c_{p}-c_{v}=[R T /(v-b)](\partial v / \partial T)_{p}$
c. Explain the four processes in the Carnot cycle
d. Show the Maxwell relation $(\partial \mathrm{T} / \partial \mathrm{V})_{\mathrm{S}}=-(\partial \mathrm{p} / \partial \mathrm{S})_{\mathrm{V}}$

Question 4 [20 marks]

a. Define adiabatic expansion
b. At $12^{\circ} \mathrm{C}$, two moles of an ideal monatomic gas occupy a volume V . The gas is adiabatically expanded to a volume 4 V .
i. Calculate the ratio of final pressure to the initial pressure
ii. Change in internal energy
iii. Calculate the molar specific heat capacity of the process Change in internal energy
iv. Calculate the molar specific heat capacity of the process

Question 5 [20 marks]

a. Compute the internal energy change and temperature change for the two processes involving 1 mole of an ideal monatomic gas.
i. $\quad 1800 \mathrm{~J}$ of heat are added to the gas and the gas does no work and no work is done on the gas
[5marks]
ii. $\quad 1800 \mathrm{~J}$ of work are done on the gas and the gas does no work and no heat is added or taken away from the gas
[5marks]
b. Discuss exhaustively a system in thermal equilibrium
[10marks]

