

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION FOR THE DEGREE OF MASTERS OF SCIENCE IN PHYSICS

MAIN REGULAR

COURSE CODE: SPB 9313

COURSE TITLE: THERMODYNAMICS

EXAM VENUE:

STREAM: YEAR THREE

DATE:

EXAM SESSION:

TIME: 3:00HRS

- 1. <u>Instructions:</u> Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Answer Question 1 (compulsory) and ANY other 2 questions
- 3. Candidates are advised not to write on the question paper.
- 4. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question 1 (30 Marks)

a.	Give the definitions of an isolated system	[2marks]
b.	State the Second law of thermodynamics	[2marks]
c.	Derive the expression for the Fermi-Dirac distribution. Explain the meaning symbols you write down.	of all the [5marks]
d.	Show that $(\partial S/\partial p)_T = -(\partial V/\partial T)_p$	[4marks]
e.	In a gas thermometer, the pressure needed to fix the volume of 0.80 g of Helium is 120.3 kPa. What is the temperature?	n at 0.40 L [5marks]
f.	Define State fuctions	[2marks]
g.	Consider a tank of gas of volume V containing N gas molecules with a total Write down the corresponding the three conjugate variables for each	energy E. [5marks]

h. By definition, Helmholtz function f = u - Ts. Show that $(\partial p/\partial T)_v = (\partial s/\partial v)_T$ [5marks]

Question 2 [20 marks]

Discuss the following thermodynamic processes

•

a.	Isothermal process	[5marks]
b.	Isobaric Process	[5marks]
c.	Isochoric Process	[5marks]
d.	Isobaric Process	[5marks]

Question 3 [20 marks]

a.	Show that for an ideal	gas obeying pv	= RT, u(T,v) $=$ u(T)	, and, $c_v(T,v)$	$= c_v(T)$	5marks]
----	------------------------	----------------	-----------------------	-------------------	------------	---------

b.	show that $c_p - c_v = [RT/(v - b)](\partial v/\partial T)_p$	[7marks]
c.	Explain the four processes in the Carnot cycle	[4marks]
d.	Show the Maxwell relation $(\partial T/\partial V)_{s} = -(\partial p/\partial S)_{V}$	[4 marks]

Question 4 [20 marks]

a. I	Define adiabatic expansion	[2marks]
b. 1 8	At 12°C, two moles of an ideal monatomic gas occupy a volume V. The gas is adiabatically expanded to a volume 4V.	
i.	Calculate the ratio of final pressure to the initial pressure	[4marks]
ii.	Change in internal energy	[4marks]
iii.	Calculate the molar specific heat capacity of the process Change in internal	energy
		[5marks]
iv.	Calculate the molar specific heat capacity of the process	[5marks]

Question 5 [20 marks]

- a. Compute the internal energy change and temperature change for the two processes involving 1 mole of an ideal monatomic gas.
 - i. 1800 J of heat are added to the gas and the gas does no work and no work is done on the gas [5marks]
 - ii. 1800 J of work are done on the gas and the gas does no work and no heat is added or taken away from the gas [5marks]
- b. Discuss exhaustively a system in thermal equilibrium [10marks]