

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION FOR THE DEGREE OF BARCHELOR IN EDUCATION SCIENCE WITH IT

MAIN

REGULAR

COURSE CODE: SPB 9322

COURSE TITLE: INTRODUCTION TO SOLID STATE PHYSICS

EXAM VENUE:

TIME: 2:00HRS

STREAM: BACHELOR OF EDUCATION

DATE:

EXAM SESSION:

- 1. <u>Instructions:</u> Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Answer Question 1 (compulsory) and ANY other 2 questions
- 3. Candidates are advised not to write on the question paper.
- 4. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION 1 (30 MARKS)

a. Define the following terminologies

	I.	Phonon	[2mks]	
	II.	Bravais Lattice	[2mks]	
	III.	Coordination Number	[2mks]	
	IV.	Weigner-Seitz cell	[2mks]	
b)	State t	he Dulong-Petit Law for crystalline matter	[2mks]	
c)	Determine the Miller Indices of a plane which is parallel to y-axis and cuts intercepts of 3 and ¹ / ₄ along x and z axes respectively [4mks]			
d)	Explain the following phenomenai. The energy of a neutron is so much smaller than that of an electron in rabeams but it is employed in crystal diffraction [2]			
	ii.	Light beam cannot be used in the analysis of crystal structure	[2 mks]	
	iii.	Neutrons are more useful than the proton in structure analysis	[2 mks]	
e)	Calculate the total number of atoms that are present in a body centered cubic cell. Show your working [4 mks]			
f)	Give t	he difference between crystalline and amorphous crystals	[4 mks]	
g)	Define a unit cell		[2 mks]	
h)	A current of $2x10^{-7}$ A is flowing in a certain PN junction at room temperature when a large reverse bias voltage is applied. Calculate the current when a forward voltage of 0.2 V is applied across the junction [4 mks]			
i)	An FC	In FCC unit cell contains 4 atoms, show that the Parking Ratio (PR) is given by 0.74		

[4mks]

j) The Debye temperature θ for iron is known to be 360 K. Calculate v_m , the maximum frequency [4mks]

QUESTION 2 (20MARKS)

- a) Discuss any **Two types of defects** in a single crystal [6 mks]
- b) Describe how the following create defects in crystals;

I.	Thermal vibration	[4 mks]
II.	Impurities	[4 mks]

c) Discuss the role of defects in electrical properties of a crystalline solid [6 mks]

QUESTION 3 (20MARKS)

a)	Write down the definitions and formulae that describes the thermal conductivity in		
solids		[5mks]	
b)	Identify and discuss the excitations that carry the heat current	[5mks]	
c)	Sketch a graph of thermal conductivity as a function of temperature for	re for a metal	
		[4mks]	

d) Identify the characteristic temperature dependence at high and low temperatures and describe the dominant physical effects in the two regions [6mks]

QUESTION 4 (20 MARKS)

The density of copper is 8.96 gm/cm³, and its atomic weight is 63.5 gm/mole.

a) Calculate the Fermi energy for copper. Assume q=1 and give your answer in eV

[5 mks]

- b) What is the corresponding electron velocity? (Assume that the electrons in copper are non-relativistic) [5 mks]
- c) At what temperature would the characteristic thermal energy (k_BT, where k_B is Boltzman constant and T is Kelvin temperature) equal the Fermi energy for copper? [5 mks]
- d) Calculate degeneracy pressure of copper, in the electron gas model [5 mks]

QUESTION 5 (20 MARKS)

- a. Compare the specific heat per mole of a monoatomic and a diatomic gas at constant volume. Use appropriate equations to explain your answer. [5mks]
- b. Calculate the specific heat capacity of a monoatomic crystalline solid [6mks]

c. Debye's model of solids gives the expression for specific heat $C_v = 9N_0k \frac{1}{x^3} \int_0^x \frac{\sigma^4 e^{\sigma}}{(e^{\sigma} - 1)^2} dE$

where $\sigma =, hv \cdot kT$., $x = \frac{hv_m}{kT}$ and $\theta_D = \frac{hv_m}{k}$ is the Debye's characteristic temperature. Show that

i. At high temperatures, Debye's model gives Dulong Petit law [6mks]

ii. At low temperatures it gives $\theta_D = \frac{hv_m}{k} C_v \propto T^3$ in agreement with the experiment [3mks]