JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES

UNIVERSITY EXAMINATION FOR THE DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
$1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2022/2023
MAIN SPECIAL

COURSE CODE: SPB 9111

COURSE TITLE: MECHANICS
EXAM VENUE:
STREAM: (BED SCI)
DATE:
EXAM SESSION:
TIME: 2:00HRS

## Instructions:

1. Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room

Useful constants

Acceleration due to gravity, $g,=9.8 \mathrm{~m} \mathrm{~s}^{-2}$
Universal gravitational constant, $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Radius of the earth $=6.37 \times 10^{6} \mathrm{~m}$

## Question 1

(a) (i) Check whether the right hand side of the following equation is dimensionally consistent.
(4 Marks)

$$
s=u t+\frac{1}{2} a t^{2}
$$

(ii) The period of oscillation of a simple pendulum is given by

$$
T=k m^{x} l^{y} g^{z}
$$

Use dimensional analysis to find $x, y$ and $z$, hence write down the complete equation.
(4 Marks)
(b) A tennis player moves in a straight-line path as shown in Figure 1. Find:


Figure 1
(i) her displacement in the time interval $1-4.0 \mathrm{~s}$.
(ii) her velocity at $t=2.0 \mathrm{~s}$.
(iii) her average velocity in the time interval $0.5-3.0 \mathrm{~s}$
(6 Marks)
(c) State Newton's first law of motion and explain its implications. Marks)
(d) A block of wood of mass 4 kg lies on a horizontal surface for which the coefficient of static friction $\mu_{s}=0.25$ and the coefficient of kinetic friction $\mu_{k}=0.15$. It is pulled by a 10 N force directed at $53^{\circ}$ above the horizontal. Find the force of friction on the block if it is at rest.
(6 Marks)
(e) A ball is projected horizontally at $20 \mathrm{~m} / \mathrm{s}$ from a cliff of height 30 m . Find its range.
(5 Marks)
(f) A rocket of mass $m$ is fired from a point $P$ on the surface of the earth so that it just escapes from the gravitational influence of the Earth. Find the minimum velocity at which the rocket must move.
(3 Marks)

## Question 2

(a) Derive the work-energy theorem.
(6 Marks)
(b) A 1.8 kg block is moved at constant speed over a horizontal surface for which $\mu_{k}=0.25$. The displacement is 2 m . It is pulled by a force $F=20 \mathrm{~N}$ directed at $45^{\circ}$ to the horizontal. Find the work done on the block by:
(i) the force $F$.
(ii) friction
(iii) gravity
(7 Marks)
(iv) What is the final velocity of the block if its initial velocity was $3 \mathrm{~m} / \mathrm{s}$ ?
(3 Marks)
(c) The length of an elastic spring with spring constant $k$ changes from $x_{1}$ to $x_{2}$ when it is acted upon by a force F. Find the work done in stretching the spring.
(4 Marks)

## Question 3

(a)(i) State the law of conservation of linear momentum. Mark)
(ii) A bullet of mass 10 g travelling horizontally with a velocity of $300 \mathrm{~m} / \mathrm{s}$ strikes a block of wood of mass 290 g which rests on a rough horizontal floor. After impact, the block and bullet move together and come to rest when the block has travelled a distance of 15 m . Calculate the coefficient of kinetic friction between the block and floor.
(10 Marks)
(b) A rifle of mass 3.25 kg , initially at rest, fires a 12.8 g bullet with a muzzle velocity of $800 \mathrm{~m} / \mathrm{s}$.
(i) Find the recoil velocity of the rifle.

Marks)
(ii) Determine the ratio of the kinetic energies of the bullet and the rifle.
(5 Marks)

## Question 4

(a) A projectile is fired from the ground with an initial velocity $u$ at an angle $\theta$ to the horizontal. It returns to the same horizontal level. Find:
(i) the time of flight.
(5 Marks)
(ii) the horizontal range, $R$.
(4 Marks)
(iii) the equation of the trajectory.
(3 Marks)
(b) A ball is thrown at $21 \mathrm{~m} / \mathrm{s}$ at $30^{\circ}$ above the horizontal from the top of a roof 16 m high. Find:
(i) the maximum height reached.
(3 Marks)
(ii) the time of flight.
(5 Marks)

## Question 5

(a)(1) State Newton's law of universal gravitation. Mark)
(ii) A satellite orbits the earth at a considerable distance $R$ from the center of the earth in the plane of the equator and in the same direction of rotation as the earth. Show that the period of the satellite $T$ is given by

$$
T^{2}=\frac{4 \pi R^{3}}{g r^{2}}
$$

where $g$ is the gravitational acceleration and $r$ is the radius of the earth.
(8 Marks)
(iii) If $R=25000 \mathrm{~km}$, find $T$.
(2 Marks)
(b) Given the first equation of linear motion, derive the second equation of motion.
(5 Marks)
(c) An aircraft has a liftoff speed of $120 \mathrm{~km} / \mathrm{h}$.
(i) What minimum constant acceleration does the aircraft require if it is to be airborne after a takeoff run of 240 m ? (3 Marks)
(ii) How long does it take the aircraft to become airborne?

