JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
 SCHOOL OF BIOLOGICAL PHYSICAL MATHEMATICS AND ACTUARIAL SCIENCE
 UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION $2^{\text {ND }}$ YEAR $1^{\text {ST }}$ SEMESTER 2023/2024 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: WAB 2208
COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY I

EXAM VENUE:
STREAM: ED. SCIENCE/ARTS/SNE
DATE: EXAM SESSION:

TIME: 2.00 HOURS
Instructions:

1. Answer Question ONE and ANY other two questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)-(30 MARKS)

a) The joint density function of two continuous random variables X and Y is given by

$$
f(x, y)=\left\{\begin{aligned}
k(2 y-x), & 0 \leq x \leq 1,0 \leq y \leq 2 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Obtain the value of k
[7 Marks]
b) Let X be a gamma distribution with the probability density function;

$$
f(x)=\left\{\begin{aligned}
\frac{1}{32} x e^{-\frac{x}{4}}, & x>0 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Obtain the mean of X .
[8 Marks]
c) The proportion of time Y that a sheet metal stamping machine is down for repair follows a Beta distribution $f(y)=\left\{\begin{array}{r}6 y(1-y), 0<y<1 \\ 0, \text { otherwise }\end{array}\right.$.
Obtain the probability that the sheet stamping machine will be down for repair for more than 50% the time allocated for repair.
[7 Marks]
d) The joint probability mass function of two discrete random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{r}
\frac{1}{48}(2 x+y), x=0,1,2,3 ; y=0,1,2 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Find the marginal densities of X hence the conditional probability $P(y=1 / x=2)$
[8 Marks]

QUESTION TWO (20 MARKS)

a) Let $f(x, y)=\left\{\begin{array}{cc}6 y, \quad 0<y<x<1, y>0, x>0 \\ 0, & \text { otherwise }\end{array}\right.$

Show that $f(x, y)$ is a joint probability density function.
b) Let X be a random variable with the density function

$$
f(x)=\left\{\begin{array}{rr}
2 x, & 0<x<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Obtain the density function of a new random variable U where $u=8-x^{2}$
c) Let X be a Chi square random variable with paramater ϑ and the density function given by

$$
f(x)=\left\{\begin{aligned}
\frac{x^{\frac{\vartheta}{2}-1} e^{-x} / 2}{2^{\frac{\vartheta}{2}} \Gamma\left(\frac{\vartheta}{2}\right)}, & x>0 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

It is known that the mean of this distribution is ϑ. By derivation, obtain an expression for the variance of the distribution.
[8 Marks]

QUESTION THREE (20 MARKS)

a) Two discrete random variables X and Y have the joint probability function given by

	$Y=0$	$Y=1$	$Y=2$
$X=1$	$1 / 12$	$3 / 12$	$1 / 12$
$X=2$	$2 / 12$	$1 / 12$	$1 / 12$
$X=3$	$1 / 12$	$1 / 12$	$1 / 12$

Obtain
i. The marginal distributions of X and Y
[4 marks]
ii. $\quad \mathrm{P}(\mathrm{Y} \leq 1)$
[2 marks]
iii. $f(X / Y=y)$
[6 marks]
b) A random variable X can be modeled as exponential with mean θ. Suppose it is known that $P(X<10)=0$. 3935. Find θ, the mean of this distribution to the nearest whole number.
[8 marks]

QUESTION FOUR (20 MARKS)

The random variables X and Y have joint p.d.f given by

$$
f(x, y)=\left\{\begin{array}{c}
\frac{4}{81} x y, \quad 0<x<3,0<y<3 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Obtain
i. The means of X and $\mathrm{Y}: \mathrm{E}(\mathrm{X}), \mathrm{E}(\mathrm{Y})$

Marks]
ii. The variances of X and Y : $\operatorname{Var}(\mathrm{X}), \operatorname{Var}(\mathrm{Y})$
iii. The joint expectation $E(X Y)$

Marks]
iv. $\operatorname{Cov}(X Y)$
v. Are X and Y independent?
[1 Mark]

QUESTION FIVE (20 MARKS)

The joint p.d.f of three continuous random variables X, Y and Z is defined as follows

$$
f(x, y, z)=\left\{\begin{array}{c}
k(x y+z), \quad 0<x<2,0<y<2,0<z<1 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Calculate:
i. the value of k,
ii. the marginal distribution of Z hence the mean of Z

