

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL PHYSICAL MATHEMATICS AND ACTUARIAL SCIENCE UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION 2ND YEAR 1ST SEMESTER 2023/2024 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: WAB 2208

COURSE TITLE: PROBABILITY AND DISTRIBUTION THEORY I

EXAM VENUE:

STREAM: ED. SCIENCE/ARTS/SNE

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer Question ONE and ANY other two questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (COMPULSORY)-(30 MARKS)

a) The joint density function of two continuous random variables X and Y is given by

$$f(x,y) = \begin{cases} k(2y-x), & 0 \le x \le 1, 0 \le y \le 2\\ 0, & otherwise \end{cases}$$

Obtain the value of k

b) Let X be a gamma distribution with the probability density function;

$$f(x) = \begin{cases} \frac{1}{32} x e^{-\frac{x}{4}}, & x > 0\\ 0, & otherwise \end{cases}$$

Obtain the mean of X.

c) The proportion of time Y that a sheet metal stamping machine is down for repair follows a Beta distribution $f(y) = \begin{cases} 6y(1-y), & 0 < y < 1 \\ 0 & otherwise \end{cases}$ 0. *otherwise*

Obtain the probability that the sheet stamping machine will be down for repair for more than 50% the time allocated for repair. [7 Marks]

d) The joint probability mass function of two discrete random variables X and Y is given by

$$f(x,y) = \begin{cases} \frac{1}{48}(2x+y), & x = 0, 1, 2, 3; y = 0, 1, 2\\ 0, & otherwise \end{cases}$$

Find the marginal densities of X hence the conditional probability P(y = 1/x = 2)[8 Marks]

QUESTION TWO (20 MARKS)

a) Let
$$f(x, y) = \begin{cases} 6y, & 0 < y < x < 1, \\ y > 0, x > 0 \\ 0, & otherwise \end{cases}$$

Show that f(x, y) is a joint probability density function.

[6 Marks]

b) Let X be a random variable with the density function

$$f(x) = \begin{cases} 2x, & 0 < x < 1\\ 0, & otherwise \end{cases}$$

Obtain the density function of a new random variable U where $u = 8 - x^2$ [6 Marks]

~

[8 Marks]

[7 Marks]

c) Let X be a Chi square random variable with paramater ϑ and the density function given by

$$f(x) = \begin{cases} \frac{x^{\frac{\vartheta}{2}-1}e^{-x/2}}{2^{\frac{\vartheta}{2}}\Gamma\left(\frac{\vartheta}{2}\right)}, & x > 0, \\ 0, & otherwise \end{cases}$$

It is known that the mean of this distribution is ϑ . By derivation, obtain an expression for the variance of the distribution. [8 Marks]

QUESTION THREE (20 MARKS)

a) Two discrete random variables X and Y have the joint probability function given by

	Y = 0	Y = 1	Y = 2
X = 1	1/12	3/12	1/12
<i>X</i> = 2	2/12	1/12	1/12
<i>X</i> = 3	1/12	1/12	1/12

Obtain

i.	The marginal distributions of X and Y	[4 marks]
ii.	$P(Y \le 1)$	[2 marks]
:::		[Compariso]

iii.
$$f(X/Y = y)$$
 [6 marks]

b) A random variable X can be modeled as exponential with mean θ . Suppose it is known that P(X < 10)= 0.3935. Find θ , the mean of this distribution to the nearest whole number. [8 marks]

QUESTION FOUR (20 MARKS)

The random variables X and Y have joint p.d.f given by

$$f(x,y) = \begin{cases} \frac{4}{81}xy, & 0 < x < 3, 0 < y < 3\\ & 0, & otherwise \end{cases}$$

Obtain

i. The means of X and Y: E(X), E(Y) Marks] [4

ii.	The variances of X and Y: Var(X), Var(Y)	[8 Marks
]	
iii.	The joint expectation E(XY) Marks]	[4
iv.	Cov (XY)	[3 Marks]
v.	Are X and Y independent?	[1 Mark]

QUESTION FIVE (20 MARKS)

The joint p.d.f of three continuous random variables X, Y and Z is defined as follows

$$f(x, y, z) = \begin{cases} k(xy + z), & 0 < x < 2, 0 < y < 2, 0 < z < 0, & otherwise \end{cases}$$

Calculate:

- i. the value of k,
- ii. the marginal distribution of Z hence the mean of Z [20 Marks]

1