

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF ACTUARIAL SCIENCE

2023/2024 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: WAB 2109

COURSE TITLE: INTRODUCTION TO PROBABILITY THEORY

EXAM VENUE:

STREAM: ACTUARIAL SCIENCE

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

- 1. Answer question one (compulsory) and any other two questions.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question One Compulsory (30mks)

- a) Briefly explain the meaning of the following terms as used in Probability (8marks)
 - i) Equally likely events
 - ii) Independent events
 - iii) Exhaustive events
 - iv) Probability

b) Prove that

if A and B are any two events, then $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

(5marks)

c) Suppose $f(x) = \frac{1}{2}(x-2)$, x = 1,2,3,4. Is f(x) a Probability Mass Function (5marks)

d) Given $f(x) = \begin{cases} c\sqrt{x} & 0 < x < 1 \\ 0 \text{ otherwise} \end{cases}$ Obtain i) c ii) $P(X < \frac{1}{4})$ e) Let $f(x) = \begin{cases} \frac{1}{5}(x+3), & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$

> (2marks) (2marks) (3marks)

(5marks)

Question Two (20mks)

Obtain i) E(X)

ii) Var (X)

iii) Var (3X + 3)

a) A group of 50 people was asked which of the three novels they read A, B or C. the results showed that 16 read A, 25 read B, 5 read C, 14 read both A and C while 2 read all the three. If a person is chosen at random from these group, find the probability that he

i)	Reads A only	(3marks)
ii)	Reads only one of the novels	(3marks)
iii)	Read at least one of the novels	(4marks)

b) At a certain assembly plant, three machines make 45%, 30%, and 25%, respectively, of the products. It is known from the past experience that 2%, 3% and 2% of the products made by each machine, respectively, are defective. Now, suppose that a finished product is randomly selected.

i.	What is the probability that it is defective?	(5marks)
ii.	If a product were chosen randomly and found to be defective,	what is the
	probability that it was made by machine 3?	(5marks)

Question Three (20mks)

a)	Let X be a random variable with pdf given by $f_x(x)$	=	$\begin{cases} cx^2 & x \le 1 \\ 0, otherwise \end{cases}$
----	---	---	--

i)	Find the constant c.	(4marks)
ii)	Find $E(X)$ and $Var(X)$.	(6marks)
iii)	Find $P(X \ge \frac{1}{2})$	(4marks)

b) Let X be a continuous random variable with pdf

$$f_X(x) = \begin{cases} 4x^3 & 0 < x \le 1 \\ 0, otherwise \end{cases}$$

Find
$$P(X \le \frac{2}{3} | X > \frac{1}{3})$$

Question Four (20mks)

Let X be a discrete random variable with the following pmf

$$P(\mathbf{X}) = \begin{cases} 0.1 & for \ x = 0.2 \\ 0.2 & for \ x = 0.4 \\ 0.2 & for \ x = .05 \\ 0.3 & for \ x = 0.8 \\ 0.2 & for \ x = 1 \\ otherwise \end{cases}$$

i.	Find RX, the range of the random variable X.	(5marks)
ii.	Find $P(X \le 0.5)$.	(5marks)
iii.	Find P(0.25 <x<0.75)< td=""><td>(5marks)</td></x<0.75)<>	(5marks)
iv.	Find P(X=0.2 X<0.6).	(5marks)

Question Five (20mks)

- a) Customers arrive in a bank according to a Poisson process with rate $\lambda = 5$ per hour. Given that the store opens at 9:00am,
 - i. what is the probability that exactly one customer has arrived by 9:30? (4mks)
 - ii. what is the probability that five have arrived by 11:30? (4mks)
 - iii. given 1, what is the probability that total of five have arrived by 11:30? (6mks)
 - iv. given 1 and 2, what is the probability that the total of 10 has arrived by the time the store closes (5:00pm)? (6mks)

b) You take an exam that contains 20 multiple-choice questions. Each question has 4 possible options. You know the answer to 10 questions, but you have no idea about the other 10 questions so you choose answers randomly. Your score X on the exam is the total number of correct answers.

i)Find the PMF of X.

(10marks)

(6marks)