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OASIS OF KNOWLEDGE



QUESTION ONE (30 marks) 
a) State and explain four important criteria of a good estimator      (4 marks) 

b) Let x1, x2, ⋯ , xn be a random sample of size n from a Poisson population with parameter λ.  Find 

unbiased estimators of λ and λ2. Also, find the variance of the estimator of λ.   (4 marks) 

c) Let x1, x2, ⋯ , xn be a random sample of n observations selected from normal population with mean μ 

and variance σ2. Find unbiased estimators of μ and σ2. Also, find the variance of the estimators.  

           (4 marks) 

d) Let x1, x2, ⋯ , xn be a random sample of size n from N(μ, σ2). Consider two estimators of μ as 

T1 =
1

n
∑ xn

1  and T2 =
1

n+1
∑ xn

1  

Find relative efficiency of T2 compared to T1       (4 marks) 

e) Let x1, x2, ⋯ , xn be a sample of n observations from a population having pdf 

 

f(x) = {
2(θ − x)

θ2
, 0 ≤ x ≤ θ

0,                  Otherwise
 

 

Show that Tn = 3x̅ is a mean square consistent estimator of θ     (4 marks) 
f) Let x1, x2, ⋯ , xn be a random sample of n observations from a population having pdf 

f(x) = {
1

θ
, 0 ≤ x ≤ θ

0,          Otherwise
 

Show that (
n+1

n
) x(n) is the most efficient estimator of θ,  

Where: x(n) = max(x1, x2, ⋯ , xn)        (4 marks)

   

g) Let x1, x2, ⋯ , xn be a random sample of size n observations from a population having pdf 

f(x, θ) =  θe−θx, x > 0 
The “apriori” distribution of Q is  

f1(θ) =  
1

θ
, 0 < x < ∞ 

Find Bayes estimator of θ         (3 marks) 
h) Let x1, x2, ⋯ , xn be a random sample of n observations from a population having pdf 

f(x, θ) =  θe−θx, 0 < x < ∞ 
Find the estimators of θ,  θ2 and  θ3 by method of moment.     (3 marks) 

 
QUESTION TWO (20mks) 

a) Let x1, x2, ⋯ , xn be a random sample of n observations from a population whose pdf is  

f(x) =
1

b − a
, a < x < b 

Find the estimators of a and b by method of moment.      (5 marks) 

b) Let x1, x2, ⋯ , xm be a random sample of m observations from binomial population with parameters n 

and p. Find the estimators of n of n and p by method of moment.     (5 marks) 

c) Let x1, x2, ⋯ , xn be a random sample of n observations from a population having pdf. 

f(x) =  
βα

┌α
xα−1e−βx;  0 ≤ x ≤ ∞;  α > 0;  β > 0 

Find the estimator of α and β by method of moment.                 (10 marks) 
 
 



 
QUESTION THREE (20mks) 

a) The following data represent the body weight (y kg), body length (x1, cm) of 12 randomly selected sea 
fish. 

x 12 20 14 25 18 16 10 18 18 20 16 12 

y 0.5 0.8 0.7 2.0 1.2 0.9 0.4 0.9 1.4 1.5 0.8 0.6 

Assume the linear model of y, x as y = β0 +  β1x + ε 
Estimate the parameters β0 and β1 by method of least squares.               (20 marks) 

 
QUESTION FOUR (20mks) 

a) Let x1, x2, ⋯ , xn  be a random sample of n observations from a Poisson population with parameter 𝜃 

such that (i) 𝑓1(𝜃) = 𝑒−𝜃, 𝜃 > 0 (ii) 𝑓1(𝜃) =  
1

𝛼
𝑒

−𝜃
𝛼⁄ , 𝜃 > 0. Using quadratic loss function find 

Bayes estimator of 𝜃.          (15 marks) 

 

b) Let x1, x2, ⋯ , xn   be a random sample of n observations from a population with probability function 

𝑃(𝑥) =  
1

𝑁
, x=1,2, …, N 

Find ML estimator of N          (5 marks) 

 
QUESTION FIVE (20mks) 

a) Let x1, x2, ⋯ , xn be a random sample of n observations from a Poisson population with parameter λ.  . 

Find a sufficient statistic for λ         (8 marks) 

b) Let x1, x2, ⋯ , xn be a random sample of n observations from a population having pdf. 

f(x) =  
1

βα┌α
xα−1e

−x
β ;  0 ≤ x ≤ ∞;  α > 0;  β > 0 

Find joint complete sufficient statistic of α and β       (12 marks) 


