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OASIS OF KNOWLEDGE



QUESTION ONE (30 MARKS) 

a) Given that 𝑋 and 𝑌 are independent random variables with probability distribution 

functions in the form given by 𝑓(𝑦) = {
2(1 − 𝑦) 0 ≤ 𝑦 ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. Determine the value 

of 𝑃(𝑋 + 𝑌 ≤ 1)        (5 Marks) 

b) Given that the joint probability distribution function of two random variables 𝑀 and 

𝑁 is 𝑃(𝑀 = 𝑚, 𝑁 = 𝑛) = {
𝑚

35×2𝑛−2
𝑚 = 1,2,3,4; 𝑛 = 1,2,3

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

i. Obtain the probability function for marginal distribution of 𝑀. (2 Marks) 

ii. Find the conditional probability function of 𝑀 given 𝑁 = 𝑛. (2 Marks) 

c) Suppose that the joint probability distribution function of 𝑋 and 𝑌 is  

𝑓(𝑥, 𝑦) = {
3

16
(4 − 2𝑥 − 𝑦) 𝑥 ≥ 0; 𝑦 ≥ 0 𝑎𝑛𝑑 2𝑥 + 𝑦 ≤ 4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

i. Determine the conditional probability distribution of 𝑌 given 𝑋. (3 Marks) 

ii. Obtain the 𝑃(𝑋 ≥ 2|𝑌 = 0.5)     (2 Marks) 

d) Given a random variable 𝑋 with probability distribution function given by 

𝑓(𝑥) = {𝜆𝑒−𝜆𝑥 𝜆 > 0; 𝑥 > 0
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Obtain; 

i. 𝐸(𝑋)         (4 Marks) 

ii. 𝑣𝑎𝑟(𝑋)        (4 Marks) 

e) Suppose 𝑋 and 𝑌 have a continuous joint distribution for which the joint probability 

distribution function is defined as follows: 

𝑓(𝑥, 𝑦) = {
3

2
(𝑦2) 0 ≤ 𝑥 ≤ 2; 0 ≤ 𝑦 ≤ 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Determine whether the results 𝑃(𝑋 < 1) and 𝑃 (𝑌 ≥
1

2
) are independent? (8 Marks) 

QUESTION TWO (20 MARKS) 

 Suppose that 𝑋 and 𝑌 have a discrete joint probability distribution function defined as  

 𝑓(𝑥, 𝑦) = {
1

30
(𝑥 + 𝑦) 𝑥 = 0,1,2 ; 𝑦 = 0,1,2,3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
.  

a) Determine the marginal probability function  of 𝑋 and 𝑌, then represent the results in 

tabular form.         (14 Marks) 

b) Obtain E(Y|X=2)        (6 Marks) 

QUESTION THREE (20 MARKS) 

 

If 𝑋 and 𝑌 are random variables whose joint probability distribution function is given 

 by 𝑓(𝑥, 𝑦) = {
2 0 < 𝑥 < 𝑦 < 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

a) Obtain the marginal densities of 𝑋 and 𝑌     (4 Marks) 

b) Determine 𝐸(𝑋|𝑌) and 𝑣𝑎𝑟(𝑋|𝑌) for 0 < 𝑦 < 1   (8 Marks) 

c) Determine 𝐸(𝑌|𝑋) and 𝑣𝑎𝑟(𝑌|𝑋) for 0 < 𝑥 < 1   (8 Marks) 

 



 

QUESTION FOUR (20 MARKS) 

a) Consider a bivariate function given by 

 𝑓(𝑥, 𝑦) = {
𝑘(6 − 𝑥 − 𝑦) 0 ≤ 𝑥 ≤ 2; 2 ≤ 𝑦 ≤ 4

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

i. Determine 𝑘 so that 𝑓(𝑥, 𝑦) is a joint probability distribution function of 𝑋 

and 𝑌.         (4 Marks) 

ii. Obtain 𝑃(𝑋 < 1, 𝑌 < 3) for equation (i.) above.   (6 Marks) 

b) Suppose that 𝑋 and 𝑌 are discrete random variables with joint probability 

distribution functions given by the following table 

 𝑌 𝑓1(𝑥) 

0 1 2 

𝑋 0 0.10 0.10 0.20 0.40 

1 0 0.15 0.05 0.20 

3 0.10 0.20 0.10 0.40 

𝑓1(𝑦) 0.20 0.45 0.35 1 

 Compute the coefficient of correlation between 𝑋 and 𝑌   (10 Marks) 

 

QUESTION FIVE (20 MARKS) 

a) Given a random variable 𝑋 with probability density function given as  

𝑓(𝑥) = {
𝜆

Г(𝑟)
(𝜆𝑥)𝑟−1𝑒−𝜆𝑥 𝑟, 𝜆 > 0; 𝑥 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Obtain; 

i. E(X)         (4 Marks) 

ii. var(X)         (6 Marks) 

b) Given that X is a continuous random variable, then X is said to have a chi – square 

distribution with probability density function given by  
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 Find the moment generating function of the chi – square   (10 Marks) 

 


