

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTURIAL

SCIENCES

UNIVERSITY EXAMINATION FOR BACHELOR OF ACTUARIAL SCIENCE 2023/24

MAIN REGULAR

COURSE CODE: WAB 2201

COURSE TITLE: Risk Theory

EXAM VENUE STREAM: B.Sc. Actuarial Science

DATE:.... EXAM SESSION: ONE

TIME: $1^{1}/_{2}$ HOURS

Instructions to the Candidate:

- 1. Answer ALL in section A and any other two questions only in Section B.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

SECTION A: [30 Marks]

a. State four properties of Moment Generating Functions (MGF).

[4 Marks]

- b. Let a and b be constants and let the moment generating function of X be $M_X(t)$. Find the moment generating function of the random variable Z = a bx. [4 Marks]
- c. The moment generating function of a random variable Y is given by;

$$M_V(t) = (1 - 4t)^{-2}$$
 for $t < 0.25$.

Calculate E(Y) and Var(Y)

[6 Marks]

- d. If $X \sim Poisson(\theta)$ and $Y \sim Poisson(\mu)$ are independent, find the probability function of Z = X + Y using convolution. [4 Marks]
- e. An insurance policy produces N claims where N is the random variable defined as;

$$N = \begin{cases} 0 \text{ with probability } 0.5\\ 1 \text{ with probability } 0.4\\ 3 \text{ with probability } 0.1 \end{cases}$$

The individual claim X follows the probability distribution given by;

$$X = \begin{cases} 1 & with probability 0.9 \\ 10 & with probability 0.1 \end{cases}$$

It is assumed that the individual claim amount X and N are independent random variables. If Z is the aggregate claim amount.

Calculate:

i. The mean of Z, E(Z) [4 Marks]

ii. The variance of Z, Var(Z) [4 Marks]

f. An insurance company believes that an individual claim for motor insurance in 2025 will have a mean size of 7500. Estimate the proportion of the claim that will exceed 2500 assuming that individual claim sizes follow lognormal distribution. [4 Marks]

SECTION B: [40 MARKS]

- 1. (a)
 - i. Define the Moment generating function and state its three uses. [5 Marsk]
 - ii. If the moment generating function of a function X is $M_X(t)$, then derive the expression for the moment generating function of 2x + 3 in terms of $M_X(t)$.

[4 Marks]

- iii. Hence if *X* is normally distributed with mean μ and variance σ^2 , derive the distribution of 2x + 3 [5 Marks]
- (b) A loss amount random variable has the moment generating function;

$$M(t) = 0.4(1 - 20t)^{-2} + 0.6(1 - 30t)^{-3}$$

Calculate the expected loss amount.

[6 Marks]

- 2. Let N be the number of claims on a risk in a year. Suppose the claims $X_1, X_2, ...$ are independent and identically distributed random variables independent of N. Let S be the total amount claimed in one year.
 - i. Derive E(S) and Var(S)

[8 Marks]

- ii. Derive and expression for moment generating function of X in terms of $M_X(t)$ and $M_N(t)$ of X_1 and N respectively. [6 Marks]
- iii. If N has a Poisson distribution, find the moment generating function of S in terms of θ . [6 Marks]
- 3. (a) Let N be a geometric random variable with probability mass function as;

$$P(x) = pq^x$$
 $n = 0,1,2,...$ where $0 < q < 1$.

Obtain the moment generating function of $S = X_1 + X_2 + \cdots + X_N$ in terms of MGF of

 $X, M_X(t)$ when N is independent of $X_{i's}$

[8 Marks]

(b) Let the number of claims N be geometric random variable with

$$P(x) = pq^x$$
 $n = 0,1,2,...$ and the common distribution function of X

X is;

$$F(x) = 1 - e^{-x}$$

That is individual claim amount is exponential random variable with mean 1. Show

That; [6 Marks]

$$M_S(t) = p + q \frac{p}{p-t}$$

- (c) If Y is a random variable with $P(x = i) = \frac{1}{4}$, i = 1,2,3,4. Find the MGF of Y[6 Marks]
- 4. (a). A claim amount on a certain type of insurance policy depends on a parameter α which varies from policy to policy. The mean and variance of the claim X given α are specified by;

$$E(X \setminus \alpha) = 200 + \alpha$$
$$Var((X \setminus \alpha) = 10 + 2\alpha$$

The parameter α follows a normal distribution with mean 20 and variance 4. Find the unconditional mean and variance [10Marks]

(b). Let N be the number of claims in a year. Suppose that claims $X_1, X_2, ...$ are independent and identically distributed random variables independent of N. Let S be the total amount claimed in one year.

Derive the Expectation of $S_1(E(S))$, and the variance of $S_2(E(S))$ [10 Marks]