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OASIS OF KNOWLEDGE



SECTION A: [30 Marks] 

 

a. State four properties of Moment Generating Functions (MGF).                           [4 Marks] 

 

b. Let 𝑎 and 𝑏 be constants and let the moment generating function of 𝑋 be 𝑀𝑋(𝑡). Find the 

moment generating function of the random variable 𝑍 = 𝑎 − 𝑏𝑥.                      [4 Marks] 

 

c. The moment generating function of a random variable Y is given by; 

 

𝑀𝑌(𝑡) = (1 − 4𝑡)−2  𝑓𝑜𝑟 𝑡 < 0.25. 

 

Calculate  𝐸(𝑌) and 𝑉𝑎𝑟(𝑌)                                                                                [6 Marks] 

 

d. If 𝑋~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃) and  𝑌~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇) are independent, find the probability function of 

𝑍 = 𝑋 + 𝑌 using convolution.                                                                              [4 Marks] 

 

e. An insurance policy produces N claims where N is the random variable defined as; 

 

𝑁 = {

0 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.5
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.4
3 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.1

 

 

The individual claim X follows the probability distribution given by; 

 

𝑋 = {
1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.9

10 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 0.1
 

It is assumed that the individual claim amount X and N are independent random 

variables. If Z is the aggregate claim amount.  

 

 

 



Calculate: 

 

i. The mean of  𝑍, 𝐸(𝑍)                                                                           [4 Marks] 

 

ii. The variance of 𝑍, 𝑉𝑎𝑟(𝑍)                                                                    [4 Marks] 

 

 

f. An insurance company believes that an individual claim for motor insurance in 2025 will 

have a mean size of 7500. Estimate the proportion of the claim that will exceed 2500 

assuming that individual claim sizes follow lognormal distribution.                [4 Marks] 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



SECTION B: [40 MARKS] 

1. (a)    

i. Define the Moment generating function and state its three uses.              [5 Marsk] 

ii. If the moment generating function of a function 𝑋 is 𝑀𝑋(𝑡), then derive the 

expression for the moment generating function of 2𝑥 + 3 in terms of 𝑀𝑋(𝑡).     

                                                                                                                   [4 Marks]                                                                    

iii. Hence if 𝑋 is normally distributed with mean 𝜇 and variance 𝜎2, derive the 

distribution of 2𝑥 + 3                                                                              [5 Marks] 

            (b)  A loss amount random variable has the moment generating function; 

                     𝑀(𝑡) = 0.4(1 − 20𝑡)−2 + 0.6(1 − 30𝑡)−3  

         Calculate the expected loss amount.                                                                   [6 Marks] 

 

2. Let 𝑁 be the number of claims on a risk in a year. Suppose the claims 𝑋1, 𝑋2, … are 

independent and identically distributed random variables independent of 𝑁. Let 𝑆 be the 

total amount claimed in one year. 

i. Derive E(S) and Var(S)                                                                         [8 Marks] 

ii. Derive and expression for moment generating function of 𝑋 in terms of 𝑀𝑋(𝑡) 

and 𝑀𝑁(𝑡) of  𝑋1 and 𝑁 respectively.                                                     [6 Marks] 

iii. If 𝑁 has a Poisson distribution, find the moment generating function of 𝑆 in 

terms of 𝜃.                                                                                              [6 Marks] 

3. (a) Let 𝑁 be a geometric random variable with probability mass function as; 

                        𝑃(𝑥) = 𝑝𝑞𝑥                        𝑛 = 0,1,2, … where 0 < 𝑞 < 1. 

            Obtain the moment generating function of 𝑆 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁 in terms of MGF of 

              X, 𝑀𝑋(𝑡)  when N is independent of 𝑋𝑖′𝑠                                                    [8 Marks] 

      (b) Let the number of claims N be geometric random variable with 

                       𝑃(𝑥) = 𝑝𝑞𝑥                        𝑛 = 0,1,2, … and the common distribution function of X     

                       X is; 



            𝐹(𝑥) = 1 − 𝑒−𝑥  

              That is individual claim amount is exponential random variable with mean 1. Show  

               That;                                                                                                          [6 Marks] 

                          𝑀𝑆(𝑡) = 𝑝 + 𝑞
𝑝

𝑝−𝑡
 

      (c) If 𝑌 is a random variable with 𝑃(𝑥 = 𝑖) =
1

4
, 𝑖 = 1,2,3,4. Find the MGF of 𝑌[6 Marks] 

4. (a). A claim amount on a certain type of insurance policy depends on a parameter 𝛼 which 

varies from policy to policy. The mean and variance of the claim X given 𝛼 are specified by; 

                                                     𝐸(𝑋\𝛼) = 200 + 𝛼  

𝑉𝑎𝑟((𝑋\𝛼) = 10 + 2𝛼 

The parameter 𝛼 follows a normal distribution with mean 20 and variance 4. Find the 

unconditional mean and variance                                                                       [10Marks] 

 

(b). Let 𝑁 be the number of claims in a year. Suppose that claims 𝑋1, 𝑋2, … are independent and 

identically distributed random variables independent of 𝑁. Let 𝑆 be the total amount claimed in 

one year.  

Derive the Expectation of S,(𝐸(𝑆), and the variance of S,𝑉𝑎𝑟(𝑆)                     [10 Marks] 

 

 

                  

                       

   


