JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF ACTUARIAL SCIENCE
$4^{\text {TH }}$ YEAR $2^{\text {ND }}$ SEMESTER 2023/2024 ACADEMIC YEAR MAIN CAMPUS

COURSE CODE: WAB 2404
COURSE TITLE: COMPUTATIONAL FINANCE

EXAM VENUE:
STREAM:

DATE:
EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question one (compulsory) and any other two questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Question 1 [30marks]

a. State the advantages of the Hull \& White model over the single factor Vasicek model. [5marks]
b. Define the following terminologies
[5marks]
i. Computational finance
ii. A Martingale
iii. Binomial tree
iv. American call Option
v. No arbitrage
c. Compute $E\left[W^{4}(t)\right]$
[5marks]
d. The stock price 6 months from expiry of an option is $£ 42$, the exercise is $£ 40$, the risk-free interest rate is 10% p.a and the volatility is 20% p.a. calculate the price of a European option written in this stock
[4marks]
e. Explain the limitations of using a model with only one factor, taking into account both theoretical and empirical considerations.
[5marks]
f. State five desirable characteristics of a term structure model
[5marks]
g. State and explain the three main types of models used to describe interest rates mathematically
[6marks]

Question 2 [20marks]

a. Let $X_{t}=e^{\lambda B_{t}-1 / 2 \lambda^{2} t}$, where λ is any constant. Show that X_{t} is a martingale with respect to F_{t}, the filtration associated with B_{t}.
[15marks]
b. Show that $B_{t}^{2}-1$ is a martingale with respect to F_{t}, the filtration associated with B_{t}.
[5marks]

Question 3 [20marks]

a. A fund must make payments of $£ 50,000$ at the end of the sixth and eighth years. Show that, if interest rates are currently $7 \% p a$ at all durations, immunization to small changes in interest rates can be achieved by holding an appropriately chosen combination of a 5- year zero-coupon bond and a 10-year zero-coupon bond.
[10marks]
b. Compute $d r(t)=[k(\theta(t)-r(t)] d t+\sigma d w(t)$
[10marks]

Question 4 [20marks]

a. State Redington's conditions for immunization
b. Explain the similarities and differences in the following three interest rate models:
i. the Hull \& White model
ii. the Cox-Ingersoll-Ross model
iii. the Vasicek model
c. Derive the Black- Scholes equation

Question 5 [20marks]

The market price of a security can be modelled by assuming that it will either increase by 12% or decrease by 15% each month, independently of the price movement in other months. No dividends are payable during the next two months. The continuously-compounded monthly riskfree rate of interest is 1%. The current market price of the security is 127 .
(i) Use the binomial model to calculate the value of a two-month European put option on the security with a strike price of 125 .
[10marks]
(ii) (ii) Calculate the value of a two-month American put option on the same security with the same strike price.
[6marks]
(iii) (iii) Calculate the value of a two-month American call option on the same security with the same strike price.
[4marks]

