

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES UNIVERSITY EXAMINATION FOR THE DIPLOMA IN LABORATORY SCIENCE TECHNOLOGY (SCIENCE) 2ND YEAR 2ND SEMESTER 2023/2024 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: SLD 1203

COURSE TITLE: PHYSICS TECHNIQUES III

EXAM VENUE:

STREAM: EDUCATION

DATE:

EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- **1.** Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
- 4 You may use the following constants:

Electronic charge $e = 1.6 \times 10^{-19} C$, Permeability of free space $\mu_0 = 4\pi \times 10^{-7} N/A^2$ Unified atomic mass unit $1u = 1.6606 \times 10^{-27} kg = 931 MeV$, Mass of a proton $M_P = 1.007267u$, Mass of a neutron $M_n = 1.008665u$, Becquerel 1Bq = 1 decay/Sec, Curie $1Ci = 3.70 \times 10^{10} Bq = 3.70 \times 10^{10} decay/Sec$, Rydberg constant $R = 1.097 \times 10^7 m^{-1}$, Speed of light $c = 3.0 \times 10^8 m/s$.

QUESTION ONE (30 MARKS)

a)	Define the following terms	(3 marks)			
	i. Magnetic materials				
	ii. Magnetisation				
	iii. Magnetic force				
b)	Ohm's law				
c)	Distinguish between full wave and half wave rectification	(3 marks)			
d)	i) State any three differences between electric and magnetic field lines	(3 marks)			
	(ii) A point charge of $+3.0 \times 10^{-6}C$ is 12.0 cm distance from a second	d point charge of			
	$-1.50 \times 10^{-6}C$. Calculate the magnitude of the force on each charge.	(4 marks)			
e)	What is half life?	(2 marks)			
f)	State the three types of radiations	(3 marks)			
g)	An x-ray tube operated at d.c potential difference of $40kV$ produces heat at the target at the rate of 720W. Assuming 0.5% of the energy of the incident electrons is converted into x-rays, calculate the number of electrons per second striking the target				
h) i)	Highlight any three uses of the CRO Draw the variation of the magnetic intensity \mathbf{B} with the applied field magnetic material taken through a complete cycle of magnetization. U- define.	(4 marks) (3 makks) d H for a typical se the diagram to			
	i) Saturation point for the material				
	ii) Remanance field.				
	iii) Coercive force of the specimen	(5 marks)			
	QUESTION TWO (20 MARKS)				
a)	With the aid of a schematic set-up of a cathode ray oscilloscope, disc principle.	cuss its working (8 marks)			
b)	Give any three uses of cathode ray oscilloscope.	(3 marks)			
c)	Differentiate between hard and soft ferromagnetic materials. Give example	ples (3 marks)			
d)	Give an account of the domain theory of magnetisation	(2			
	marks)				

e) Show that the reciprocal of equivalent capacitances in series is given by

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$
(4 marks)

QUESTION THREE (20 MARKS)

- a) With aid of a diagram describe the electromagnetic spectrum. (4 marks)
- b) What is meant by magnetic hysteresis? Sketch a typical hysteresis curve and explain. What can be deduced from this about the magnetic properties of the material? (8 marks)
- c) What are the desirable magnetic properties for the material of (i) the core of an electromagnet and (ii) a permanent magnet? (2 marks)
- d) Distinguish between Diamagnetism, Paramagnetism and Ferromagnetism (3 marks)

Consider the resistors R_1 , R_2 and R_3 connected as shown above. If the current *I* is flowing through the circuit between points a and b, determine the effective resistance across ab. (3 marks)

QUESTION FOUR (20 MARKS)

(a)	Define the term radioactivity	(2 marks)
(b)	By denoting the number of nuclides in a radioactive decay process at tim	$t_0 = 0 by N_0$
	and the number of nuclides at the present time t by N' obtain the express	sion connecting
	N and N_0 .	(5 marks)
(c)	Determine the number of years it takes for 60 % of a given mass of	a radio-isotope
	whose half-life is 6 years to decay.	(4 marks)
(d)	With aid of a diagram describe how x-ray can be produced	(5 Marks)
f)	Highlight any four uses of x-rays	(4 marks)

QUESTION FIVE (20 MARKS)

a) With aid of a diagram describe the hysteris loop through a magnetization cycle.

b) Consider capacitors C_1 , C_2 and C_3 arranged in parallel as shown above. The applied p.d V is same across each but the charges are different. Compute the effective capacitance for the network shown below. (4 marks)

- c) (i) What is wave rectification?(2 marks)(ii) With aid of a diagram describe Half-wave rectification(3 marks)d) State the Kirchhoff's Laws(2 Marks)
- e) Consider the following circuit. Calculate the current I_1 , I_2 and I_3 in the above circuit.

(4 marks

