JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL AND PHYSICAL SCIENCES
 UNIVERSITY EXAMINATION FOR THE DIPLOMA IN LABORATORY SCIENCE
 TECHNOLOGY (SCIENCE)
 $2^{\text {ND }}$ YEAR $2^{\text {ND }}$ SEMESTER 2023/2024 ACADEMIC YEAR
 MAIN
 REGULAR

COURSE CODE: SLD 1203

COURSE TITLE: PHYSICS TECHNIQUES III
EXAM VENUE:
STREAM: EDUCATION
DATE:
EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.
4 You may use the following constants:
Electronic charge e $=1.6 \times 10^{-19} \mathrm{C}$,
Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} N / A^{2}$
Unified atomic mass unit $1 \mathrm{u}=1.6606 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV}$,
Mass of a proton $M_{P}=1.007267 u$,
Mass of a neutron $M_{n}=1.008665 u$,
Becquerel $1 B q=1$ decay $/ S e c$,

Curie $1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}=3.70 \times 10^{10}$ decay $/ \mathrm{Sec}$,
Rydberg constant $R=1.097 \times 10^{7} \mathrm{~m}^{-1}$,
Speed of light $c=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$.

QUESTION ONE (30 MARKS)

a) Define the following terms
i. Magnetic materials
ii. Magnetisation
iii. Magnetic force
b) Ohm's law
c) Distinguish between full wave and half wave rectification
(3 marks)
d) i) State any three differences between electric and magnetic field lines
(ii) A point charge of $+3.0 \times 10^{-6} \mathrm{C}$ is 12.0 cm distance from a second point charge of $-1.50 \times 10^{-6} \mathrm{C}$. Calculate the magnitude of the force on each charge.
e) What is half life?
f) State the three types of radiations
g) An x-ray tube operated at d.c potential difference of 40 kV produces heat at the target at the rate of 720 W . Assuming 0.5% of the energy of the incident electrons is converted into x-rays, calculate the number of electrons per second striking the target
h) Highlight any three uses of the CRO
i) Draw the variation of the magnetic intensity \mathbf{B} with the applied field \mathbf{H} for a typical magnetic material taken through a complete cycle of magnetization. Use the diagram to define,
i) Saturation point for the material
ii) Remanance field.
iii) Coercive force of the specimen (5 marks)

QUESTION TWO (20 MARKS)

a) With the aid of a schematic set-up of a cathode ray oscilloscope, discuss its working principle.
b) Give any three uses of cathode ray oscilloscope.
c) Differentiate between hard and soft ferromagnetic materials. Give examples (3 marks)
d) Give an account of the domain theory of magnetisation marks)
e) Show that the reciprocal of equivalent capacitances in series is given by $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$

QUESTION THREE (20 MARKS)

a) With aid of a diagram describe the electromagnetic spectrum. (4 marks)
b) What is meant by magnetic hysteresis? Sketch a typical hysteresis curve and explain. What can be deduced from this about the magnetic properties of the material? (8 marks)
c) What are the desirable magnetic properties for the material of (i) the core of an electromagnet and (ii) a permanent magnet?
d) Distinguish between Diamagnetism, Paramagnetism and Ferromagnetism (3 marks)

Consider the resistors R_{1}, R_{2} and R_{3} connected as shown above. If the current I is flowing through the circuit between points a and b , determine the effective resistance across ab . (3 marks)

QUESTION FOUR (20 MARKS)

(a) Define the term radioactivity
(2 marks)
(b) By denoting the number of nuclides in a radioactive decay process at time $t_{0}=0$ by N_{0} and the number of nuclides at the present time t by N^{\prime} obtain the expression connecting N and N_{0}.
(5 marks)
(c) Determine the number of years it takes for 60% of a given mass of a radio-isotope whose half-life is 6 years to decay.
(d) With aid of a diagram describe how x-ray can be produced
f) Highlight any four uses of x-rays

QUESTION FIVE (20 MARKS)

a) With aid of a diagram describe the hysteris loop through a magnetization cycle.
b) Consider capacitors C_{1}, C_{2} and C_{3} arranged in parallel as shown above. The applied p.d V is same across each but the charges are different. Compute the effective capacitance for the network shown below.

c) (i) What is wave rectification?
(ii) With aid of a diagram describe Half-wave rectification
(2 marks)
(3 marks)
d) State the Kirchhoff's Laws
e) Consider the following circuit. Calculate the current $\mathrm{I}_{1}, \mathrm{I}_{2}$ and I_{3} in the above circuit.
(4 marks

