JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATION FOR THE DEGREE OF BARCHELOR IN EDUCATION SCIENCE WITH IT

MAIN

REGULAR

COURSE CODE: SPB 9322
COURSE TITLE: INTRODUCTION TO SOLID STATE PHYSICS

EXAM VENUE: STREAM: BACHELOR OF EDUCATION
DATE: EXAM SESSION:
TIME: 2:00HRS

1. Instructions: Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION 1 (30 MARKS)

a. Define the following terminologies
I. Basis [2mks]
II. Bravais Lattice
[2mks]
III. Wigner Seitz Cell
b) Compare the specific heat per mole of a monoatomic and a diatomic gas at constant volume. Use appropriate equations to explain your answer.
c) The Debye temperature θ for iron is known to be 360 K . Calculate v_{m}, the maximum frequency
d) Find the Miller indices of the plane below

e) Define the Debye Temperature T_{D} in terms of the Debye frequency ω_{D}
f) The Debye temperature θ for iron is known to be 360 K . Calculate v_{m}, the maximum frequency
g) State the Dulong-Petit Law for crystalline matter
h) An FCC unit cell contains 4 atoms, show that the Parking Ratio (PR) is given by 0.74

QUESTION 2 (20MARKS)

a) Use the Band theory, explain the construction of band gap
b) Explain the following phenomena
i. The energy of a neutron is so much smaller than that of an electron in radiation beams but it is employed in crystal diffraction
ii. Light beam cannot be used in the analysis of crystal structure
iii. Neutrons are more useful than the proton in structure analysis
c) The edge of a unit cell in a simple cubic crystal is $\mathrm{a}=2.62 \times 10^{-10} \mathrm{~m}$. Given that the monochromatic X-ray has a wavelength of 1.54 Amstrongs, find the Bragg angle corresponding to reflection from the plane (211)
[3 mks]
d) The Bragg angle for reflection from the (110)-planes in BCC iron is 22° for an X-ray wavelength of 1.54 Amstrongs
i. Calculate the cube length
ii. What is the Bragg angle for reflection from the (121)-planes?

QUESTION 3 (20MARKS)

a) The energy of interaction of two atoms a distance r apart can be written as:
$E(r)=-\frac{p}{r}+\frac{q}{r^{7}}$ where p and q are constants.
i. Show that for the particles to be in equilibrium, $r=r_{o}=(7 q / p)^{1 / 6}$
ii. In stable equilibrium, show that the energy of attraction is seven times that of the repulsion
iii. The energy of attraction and repulsion at a stable equilibrium are equal. Show
b)
i) Define mobility of a carrier of current and show how it is related to the Hall Coefficient
ii) Compare the mobility of an electron in the conduction band of a semiconductor and the mobility of an electron (or hole) in the valence band. Give reason for your answer
iii) Derive an expression for the electrical conductivity of a metal on the basis of free electron

OUESTION 4 (20 MARKS)

a) Define Brillouin zone
b) Consider a plane $h \quad k l$ in a crystal lattice which intersects the crystal axis as $x_{\overline{1}} \vec{a}, x_{2} \vec{a}_{2}, x_{3} \vec{a}_{3}$
i. Prove that the reciprocal lattice vector $\vec{G}=h \vec{b}_{1}+k \vec{b}_{2}+l \vec{b}_{3}$ is perpendicular to this plane.
ii. Prove that the distance between the two adjacent parallel planes of the lattice is

$$
d(h k l)=\frac{2 \pi}{|\vec{G}|}
$$

iii. Show for a simple cubic lattice that $d=\frac{a}{\sqrt{h^{2}+k^{2}+l^{2}}}$

QUESTION 5 (20 MARKS)

a. Compare the specific heat per mole of a monoatomic and a diatomic gas at constant volume. Use appropriate equations to explain your answer.
b. Calculate the specific heat capacity of a monoatomic crystalline solid
c. Debye's model of solids gives the expression for specific heat $C_{v}=9 N_{0} k \frac{1}{x^{3}} \int_{0}^{x} \frac{\sigma^{4} e^{\sigma}}{\left(e^{\sigma}-1\right)^{2}} d E$ where $\sigma=\frac{h v}{k T}, x=\frac{h v_{m}}{k T}$ and $\theta_{D}=\frac{h v_{m}}{k}$ is the Debye's characteristic temperature. Show that;
i. At high temperatures, Debye's model gives Dulong Petit law
ii. At low temperatures it gives $C_{\mathrm{v}} \propto T^{3}$ in agreement with the experiment

