

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY UNIVERSITY EXAMINATION FOR THE DEGREE OF BARCHELOR IN EDUCATION SCIENCE WITH IT

MAIN

REGULAR

COURSE CODE: SPB 9322

COURSE TITLE: INTRODUCTION TO SOLID STATE PHYSICS

EXAM VENUE:

STREAM: BACHELOR OF EDUCATION

DATE:

EXAM SESSION:

TIME: 2:00HRS

- 1. <u>Instructions:</u> Answer question 1 (Compulsory) in Section A and ANY other 2 questions in Section B.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION 1 (30 MARKS)

a. Define the following terminologies

I.	Basis	[2mks]
II.	Bravais Lattice	[2mks]
III.	Wigner Seitz Cell	[2mks]

- b) Compare the specific heat per mole of a monoatomic and a diatomic gas at constant volume. Use appropriate equations to explain your answer. [4mks]
- c) The Debye temperature θ for iron is known to be 360 K. Calculate v_m , the maximum frequency [4 mks]
- d) Find the Miller indices of the plane below

v v

e) Define the Debye Temperature T_D in terms of the Debye frequency ω_D [2mks]

f) The Debye temperature θ for iron is known to be 360 K. Calculate v_m , the maximum frequency [4mks]

g) State the Dulong-Petit Law for crystalline matter

h) An FCC unit cell contains 4 atoms, show that the Parking Ratio (PR) is given by 0.74

[2mks]

[4 mks]

[4mks]

QUESTION 2 (20MARKS)

a)	Use the	e Band theory, explain the construction of band gap	[5 mks]
b)	Explai i.	n the following phenomena The energy of a neutron is so much smaller than that of an electron in beams but it is employed in crystal diffraction	radiation [2 mks]
	ii.	Light beam cannot be used in the analysis of crystal structure	[2 mks]
	iii.	Neutrons are more useful than the proton in structure analysis	[2 mks]
c)	The economic monococorrespondence of the correspondence of the cor	lge of a unit cell in a simple cubic crystal is $a = 2.62 \times 10^{-10}$ m. Given hromatic X-ray has a wavelength of 1.54 Amstrongs, find the Brag ponding to reflection from the plane (211)	that the gg angle [3 mks]
d)	The B wavele	ragg angle for reflection from the (110)-planes in BCC iron is 22° for ength of 1.54 Amstrongs	an X-ray
	i.	Calculate the cube length	[3 mks]

ii. What is the Bragg angle for reflection from the (121)-planes? [3 mks]

QUESTION 3 (20MARKS)

a) The energy of interaction of two atoms a distance *r* apart can be written as:

 $E(r) = -\frac{p}{r} + \frac{q}{r^7}$ where p and q are constants.

- Show that for the particles to be in equilibrium, $r = r_o = (7 \ q/p)^{1/6}$ i. [4mks]
- ii. In stable equilibrium, show that the energy of attraction is seven times that of the repulsion [4mks]
- iii. The energy of attraction and repulsion at a stable equilibrium are equal. Show [3mks]

b)

Define mobility of a carrier of current and show how it is related to the Hall i) Coefficient [3mks]

- ii) Compare the mobility of an electron in the conduction band of a semiconductor and the mobility of an electron (or hole) in the valence band. Give reason for your answer [3mks]
- iii) Derive an expression for the electrical conductivity of a metal on the basis of free electron [3mks]

QUESTION 4 (20 MARKS)

- a) Define Brillouin zone
- b) Consider a plane $h \ k \ l$ in a crystal lattice which intersects the crystal axis as $x_1 \vec{a}, x_2 \vec{a}_2, x_3 \vec{a}_3$
 - i. Prove that the reciprocal lattice vector $\vec{G} = h\vec{b_1} + k\vec{b_2} + l\vec{b_3}$ is perpendicular to this plane. [6 mks]
 - ii. Prove that the distance between the two adjacent parallel planes of the lattice is $d(hkl) = \frac{2\pi}{|\vec{G}|}$ [6 mks]

iii. Show for a simple cubic lattice that $d = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$ [6 mks]

QUESTION 5 (20 MARKS)

- a. Compare the specific heat per mole of a monoatomic and a diatomic gas at constant volume. Use appropriate equations to explain your answer. [5mks]
- b. Calculate the specific heat capacity of a monoatomic crystalline solid [6mks]
- c. Debye's model of solids gives the expression for specific heat $C_v = 9N_0k\frac{1}{x^3}\int_0^x \frac{\sigma^4 e^{\sigma}}{\left(e^{\sigma}-1\right)^2}dE$

where $\sigma = \frac{h\nu}{kT}$, $x = \frac{h\nu_m}{kT}$ and $\theta_D = \frac{h\nu_m}{k}$ is the Debye's characteristic temperature. Show that;

- i. At high temperatures, Debye's model gives Dulong Petit law [6mks]
- ii. At low temperatures it gives $C_v \propto T^3$ in agreement with the experiment [3mks]

[2 mks]