

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE) 2023/2024 EXAMINATIONS

MAIN REGULAR

COURSE CODE: SPB 9327

COURSE TITLE: QUANTUM MECHANICS I

EXAM VENUE: STREAM: EDUCATION

DATE: EXAM SESSION:

TIME: 2:00 HRS

Instructions:

- 1. Answer question 1 (Compulsory) and ANY other 2 questions.
- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants

 $\hbar = 1.054 \times 10^{-34} \text{Js}$ Mass of proton = 1.67 x 10⁻²⁷ kg 1 eV = 1.6 x 10⁻¹⁹ J Mass of electron = 9.11 x 10⁻³¹ kg Planck's constant = 6.626 x 10⁻³⁴ Js

SECTION A (Compulsory) Question 1 (30 marks)

- (a) State any two postulates of quantum mechanics. (2 marks)
- (b) Find the normalization constant *A* in the wave function $\Psi(x) = Asinkx$ within the interval $0 \le x \le a$. (3 marks)
- (c) An electron has a kinetic energy of 1 eV. Calculate its de Broglie wavelength. (3 marks)
- (d) Show that the function $\Psi(x,t) = Ae^{i(kx-\omega t)} Ae^{-i(kx+\omega t)}$ is a solution to the Schroedinger equation $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2}$ and give the conditions for this to be so. (4 marks)
- (e) A wave packet is to be used for describing a particle that is localized within a region of space. Describe the composition of such a wave packet and explain how it may be realized practically.

(3 marks)

(f) An electron moves in the x-direction with a speed of 3.6×10^6 m/s. Its speed can be measured to a precision of 1%. Calculate the precision with which its x-coordinate can be simultaneously measured.

(4 marks)

(g) The phase velocity of water waves in deep water is given by

$$v = \sqrt{\frac{g}{2\pi\lambda}}.$$

Find the group velocity of a wave packet of such waves.

(3 marks)

- (h) Even when the rate of flow of photons in a double slit experiment is reduced to one incident photon at a time, an interference pattern still forms on the screen eventually. Explain this observation using quantum mechanics. (3 marks)
- (i) Explain what is meant by a bound state in quantum mechanics. (2 marks)
- (j) An electron in an infinite square well moves from level n = 4 to the level n = 1, emitting a photon of frequency 3.54×10^{14} Hz. Calculate the width of the well. (3 marks)

SECTION B (Answer any TWO questions in this section)

Question 2 (20 marks)

(a) A particle of mass m is in a one-dimensional potential

$$V(x) = \begin{cases} \infty, & \text{if } -\infty < x < 0 \\ -V_0, & \text{if } 0 < x < a \\ 0, & \text{if } a < x < \infty \end{cases}$$

- i. Sketch a graph of the potential against position, and explain why a bound state can only exist in a specified region of the graph. (3 marks)
- ii. For a bound state, show that a is defined by $a = \frac{1}{k_0} \cot^{-1} \left(-\frac{\alpha}{k_0} \right)$ where α and k_0 are parameters.
- (b) A particle is described by the wave function $\Psi(x,t) = e^{i(kx \omega t)}$.
- (i) Apply the momentum operator and also the energy operator $-i\hbar(d/dt)$ on the function hence determine the eigenvalues in each case. (6 marks)
 - (ii) State, with a reason, whether or not the function represents a bound state. (3 marks)

Question 3 (20 marks)

- (a) Suppose an electron has a wave function $\psi(x) = cx^3 e^{-\alpha x}$ where α is a constant.
- (i) Find the constant c that ensures the given wave function is properly normalized. You may use the standard integral

$$\int x^n e^{-bx} dx = \frac{n!}{b^{n+1}}.$$
 (6 marks)

(ii) Find the expectation value of x.

(5 marks)

- (b) The wave functions of the two waves emerging from the two slits in a double-slit experiment are given by $\Psi_1 = A_1 e^{+i(kR_1 \omega t)}$ and $\Psi_2 = A_2 e^{+i(kR_2 \omega t)}$ at the point where constructive interference occurs on the screen.
 - i. Explain what A_1 , A_2 as well as R_1 and R_2 represent.

(2 marks)

ii. Obtain, in the simplest form, the probability density function of the position of a quantum particle on the screen, $|\Psi|^2$. You may use the trigonometric identities

$$cos\theta = (e^{+i\theta} + e^{-i\theta})/2;$$
 $cos\theta = 2cos^2(\frac{\theta}{2}) - 1$ (7 marks)

Question 4 (20 marks)

- (a) A particle is confined to an infinite square well of width a.
 - i. Show that the possible values of energy are given by $E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$. (6 marks)
 - ii. Find an expression for the possible wave functions inside the well, $\psi_n(x)$. (4 marks)
- (b) Use your results in (a) above to determine the expectation values of position x and of the momentum p_x . (10 marks)

Question 5 (20 marks)

- (a) A solution to the one-dimensional simple harmonic oscillator for a mass m is given as $\psi(x) = Ae^{-ax^2}$. Obtain the value of a and the energy E in terms of k, m and \hbar where k has the usual meaning. (9 marks)
- (b) A particle of mass m, confined to a harmonic oscillator potential $V = mx^2 \omega^2/2$, is in a state described by the wave function

$$\Psi(x,t) = Ae^{\left(\frac{-mx^2\omega}{2\hbar} - i\frac{\omega t}{2}\right)}$$

Verify that this is a solution of the Schrödinger equation.

(5 marks)

(c) Find the eigenvalues and eigenfunctions of the operator d/dx.

(6 marks)