JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION (SCIENCE)
2023/2024 EXAMINATIONS

MAIN REGULAR
COURSE CODE: SPB 9327
COURSE TITLE: QUANTUM MECHANICS I
EXAM VENUE:
DATE:
STREAM: EDUCATION
EXAM SESSION:
TIME: 2:00 HRS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

Useful constants
$\hbar=1.054 \times 10^{-34} \mathrm{Js}$
Mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$ $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$
Mass of electron $=9.11 \times 10^{-31} \mathrm{~kg}$
Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$

SECTION A (Compulsory)
 Question 1 (30 marks)

(a) State any two postulates of quantum mechanics.
(2 marks)
(b) Find the normalization constant A in the wave function $\Psi(x)=A \operatorname{sink} x$ within the interval $0 \leq x \leq$ a. (3 marks)
(c) An electron has a kinetic energy of 1 eV . Calculate its de Broglie wavelength.
(3 marks)
(d) Show that the function $\Psi(x, t)=A e^{i(k x-\omega t)}-A e^{-i(k x+\omega t)}$ is a solution to the Schroedinger equation $i \hbar \frac{\partial \Psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \Psi}{\partial x^{2}}$ and give the conditions for this to be so.
marks)
(e) A wave packet is to be used for describing a particle that is localized within a region of space.

Describe the composition of such a wave packet and explain how it may be realized practically.
(3 marks)
(f) An electron moves in the x-direction with a speed of $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Its speed can be measured to a precision of 1%. Calculate the precision with which its x -coordinate can be simultaneously measured.
(4 marks)
(g) The phase velocity of water waves in deep water is given by

$$
v=\sqrt{\frac{g}{2 \pi \lambda^{\prime}}} .
$$

Find the group velocity of a wave packet of such waves.
(3 marks)
(h) Even when the rate of flow of photons in a double slit experiment is reduced to one incident photon at a time, an interference pattern still forms on the screen eventually. Explain this observation using quantum mechanics.
(i) Explain what is meant by a bound state in quantum mechanics.
(2 marks)
(j) An electron in an infinite square well moves from level $n=4$ to the level $n=1$, emitting a photon of frequency $3.54 \times 10^{14} \mathrm{~Hz}$. Calculate the width of the well.

SECTION B (Answer any TWO questions in this section)

Question 2 (20 marks)

(a) A particle of mass m is in a one-dimensional potential

$$
V(x)=\left\{\begin{array}{c}
\infty, \text { if }-\infty<x<0 \\
-V_{0}, \text { if0 }<x<a . \\
0, \text { if } a<x<\infty
\end{array}\right.
$$

i. Sketch a graph of the potential against position, and explain why a bound state can only exist in a specified region of the graph.
(3 marks)
ii. For a bound state, show that a is defined by $a=\frac{1}{k_{0}} \cot ^{-1}\left(-\frac{\alpha}{k_{0}}\right)$ where α and k_{0} are parameters.
(b) A particle is described by the wave function $\Psi(x, t)=e^{i(k x-\omega t)}$.
(i) Apply the momentum operator and also the energy operator $-i \hbar(d / d t)$ on the function hence determine the eigenvalues in each case.
(ii) State, with a reason, whether or not the function represents a bound state.

Question 3 (20 marks)

(a) Suppose an electron has a wave function $\psi(x)=c x^{3} e^{-\alpha x}$ where α is a constant.
(i) Find the constant c that ensures the given wave function is properly normalized. You may use the standard integral

$$
\int x^{n} e^{-b x} d x=\frac{n!}{b^{n+1}}
$$

(ii) Find the expectation value of x.
(b) The wave functions of the two waves emerging from the two slits in a double-slit experiment are given by $\Psi_{1}=A_{1} e^{+i\left(k R_{1}-\omega t\right)}$ and $\Psi_{2}=A_{2} e^{+i\left(k R_{2}-\omega t\right)}$ at the point where constructive interference occurs on the screen.
i. Explain what A_{1}, A_{2} as well as R_{1} and R_{2} represent.
(2 marks)
ii. Obtain, in the simplest form, the probability density function of the position of a quantum particle on the screen, $|\Psi|^{2}$. You may use the trigonometric identities

$$
\begin{equation*}
\cos \theta=\left(e^{+i \theta}+e^{-i \theta}\right) / 2 ; \quad \cos \theta=2 \cos ^{2}\left(\frac{\theta}{2}\right)-1 \tag{7marks}
\end{equation*}
$$

Question 4 (20 marks)

(a) A particle is confined to an infinite square well of width a.
i. Show that the possible values of energy are given by $E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}$. (6 marks)
ii. Find an expression for the possible wave functions inside the well, $\psi_{n}(x)$.
(b) Use your results in (a) above to determine the expectation values of position x and of the momentum p_{x}.

Question 5 (20 marks)

(a) A solution to the one-dimensional simple harmonic oscillator for a mass m is given as $\psi(x)=$ $A e^{-a x^{2}}$. Obtain the value of a and the energy E in terms of k, m and \hbar where k has the usual meaning. (9 marks)
(b) A particle of mass m, confined to a harmonic oscillator potential $V=m x^{2} \omega^{2} / 2$, is in a state described by the wave function

$$
\Psi(x, t)=A e^{\left(\frac{-m x^{2} \omega}{2 \hbar}-i \frac{\omega t}{2}\right)}
$$

Verify that this is a solution of the Schrödinger equation.
(c) Find the eigenvalues and eigenfunctions of the operator d / dx.

