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QUESTION ONE [20 MARKS] 

a)  Define a normed space and provide examples.                                                   [5marks] 

 

b)  Prove that every finite-dimensional normed space is a Banach space. Discuss the 

implications of this result in the study of normed spaces.                                     [15marks] 

                                                                                                                                                                                                                                                                                                                                             

QUESTION TWO [20 MARKS] 

a)  Discuss Hilbert space properties.                                                                         [6marks]    

                                                                    

b) Given a bounded linear operator on a Hilbert space, illustrate how you would determine 

its spectral properties, including its spectrum and eigenvalues. Provide examples to 

illustrate your answer.                                                                                           [14marks] 

 

QUESTION THREE [20 MARKS] 

a) Give examples of normed spaces that are not Banach spaces and explain why they fail to 

satisfy the completeness property                                                                            [8marks] 

 

b) Highlight the role of the Hahn-Banach theorem in establishing duality theorems.  

                                                                                                                               [12marks] 

                                                                                                     

QUESTION FOUR [20 MARKS] 

a) Prove the Banach Fixed-Point Theorem and explore its significance in the study of 

Banach spaces.                                                                                                       [10marks] 

 

b) Discuss the consequences of the Open Mapping Theorem in the study of bounded linear 

operators. 

                                                                                                                               [10marks] 

 

QUESTION FIVE [20 MARKS] 

a) Let H be a Hilbert space. Show that any bounded linear operator T: H→H has a unique 

adjoint operator T*. Discuss properties of the adjoint operator and its relationship with 

the original operator.                                                                                                        [8marks] 

b) Explore the concept of weak convergence in Banach spaces. Provide examples 

illustrating the difference between weak and norm convergence, and explore the 

relationship between weak convergence and weak* convergence.                       [12marks] 

 


