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QUESTION ONE 20 MARKS 

a)  If 𝑋 = {𝑎, 𝑏, 𝑐} and 𝜏 is a topology on X, with {𝑎} ∈ 𝜏, {𝑏} ∈ 𝜏 𝑎𝑛𝑑 {𝑐} ∈ 𝜏. Prove that 𝜏 

is a discrete topology.               (7 marks) 

b)  Let (𝑋, 𝜏) be any topological space. Verify that the intersection of any finite number of 

members of 𝜏 is a member in𝜏.               (7 marks) 

c) List all possible topologies of the set 𝑌 = {𝑎, 𝑏, 𝑐}.             (6 marks) 

QUESTION TWO (20 MARKS) 

OASIS OF KNOWLEDGE



a) Let B be a basis for a topology 𝜏 on a non-empty set X If 𝐵1 is a collection of subsets of 

X such that 𝜏 ⊇ 𝐵1 ⊇ 𝐵. Prove that 𝐵1 is also a basis for 𝜏.            (8 marks) 

b) Let 𝐶[0, 1] be the set of all continuous real-valued functions on [0, 1]. Show that the 

collection M where 𝑀 = {𝑚(𝑓, 𝜖): 𝑓 ∈ 𝐶[0, 1] 𝑎𝑛𝑑 𝜖 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟} and 

𝑚(𝑔, 𝜖) = {𝑔: 𝑔 ∈ 𝐶[0, 1] 𝑎𝑛𝑑 ∫ |𝑓 − 𝑔| < 𝜖}
1

0
 is a basis for a topology 𝜏 𝑜𝑛 𝐶[0, 1].             

(12 marks) 

QUESTION THREE (20 MARKS) 

a) Let (𝑋, 𝜏) be any topological space. Prove that any arbitrary intersection of closed subsets 

of X are closed and finite union of closed subsets of X are closed.               (8 marks) 

b) Let 𝑋 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝜏 = {𝑋, ∅, {𝑎}, {𝑎, 𝑏}, {𝑎, 𝑐, 𝑑}, {𝑎, 𝑏, 𝑒}}. List the members of 

the induced topologies 𝜏𝑌 on 𝑌 = {𝑎, 𝑐, 𝑒} and 𝜏𝑍 on 𝑍 = {𝑏, 𝑐, 𝑑, 𝑒}.         (4 marks) 

c) Show that a topological space (𝑋, 𝜏) is a 𝜏1-space if and only if every subset consist one 

point is closed.                (8 marks) 

QUESTION FOUR (20 MARKS) 

a) State and prove the following :             (6 marks) 

i) Urysohns lemma 

ii) Tietze’s extension theorem. 

b) Show that if A is closed subspace of Lindelof space (𝑋, 𝜏) then (𝐴, 𝜏𝐴) is also lindelof.            

(6 marks) 

c) Let (𝑋, 𝜏) be a topological space and R be an equivalent relation on X. Suppose 𝑋|𝑅 has 

idendification topological 𝜏∗. Prove that the identification map 𝑓: (𝑋, 𝜏) → (𝑋|𝑅, 𝜏∗) is 

continuous.                  (8 marks) 

 QUESTION FIVE (20 MARKS) 

a) Show that any two open intervals in ℝ are homeomorphic.            (7 marks) 

b) Show that any 2nd countable space is first countable.            (6 marks) 

c) Let (𝑋, 𝜏𝑋) and (𝑌, 𝜏𝑌) be two topological spaces. Show that 𝑓: 𝑋 → 𝑌 is continuous if 

and only if 𝑓−1(𝐵) ∈ 𝜏 for all 𝐵 ∈ ℬ where ℬ is a basis for 𝜏𝑌.          (7 marks) 


