

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

1ST YEAR 1ST SEMESTER 2023/2024 ACADEMIC YEAR

MAIN CAMPUS

COURSE CODE: SMA 805

COURSE TITLE: General Topology I

EXAM VENUE:

STREAM: (MSc. PURE MATHEMATICS)

DATE:

EXAM SESSION: 2.00 – 5.00 PM

TIME: 3.00 HOURS

Instructions:

- 1. Answer any THREE questions only.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE 20 MARKS

- a) If $X = \{a, b, c\}$ and τ is a topology on X, with $\{a\} \in \tau, \{b\} \in \tau$ and $\{c\} \in \tau$. Prove that τ is a discrete topology. (7 marks)
- b) Let (X, τ) be any topological space. Verify that the intersection of any finite number of members of τ is a member in τ . (7 marks)
- c) List all possible topologies of the set $Y = \{a, b, c\}$. (6 marks)

QUESTION TWO (20 MARKS)

- a) Let B be a basis for a topology τ on a non-empty set X If B_1 is a collection of subsets of X such that $\tau \supseteq B_1 \supseteq B$. Prove that B_1 is also a basis for τ . (8 marks)
- b) Let C[0, 1] be the set of all continuous real-valued functions on [0, 1]. Show that the collection M where $M = \{m(f, \epsilon): f \in C[0, 1] \text{ and } \epsilon \text{ is a positive number}\}$ and $m(g, \epsilon) = \{g: g \in C[0, 1] \text{ and } \int_0^1 |f g| < \epsilon\}$ is a basis for a topology τ on C[0, 1]. (12 marks)

QUESTION THREE (20 MARKS)

- a) Let (X, τ) be any topological space. Prove that any arbitrary intersection of closed subsets of X are closed and finite union of closed subsets of X are closed. (8 marks)
- b) Let $X = \{a, b, c, d, e\}$ and $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, c, d\}, \{a, b, e\}\}$. List the members of the induced topologies τ_Y on $Y = \{a, c, e\}$ and τ_Z on $Z = \{b, c, d, e\}$. (4 marks)
- c) Show that a topological space (X, τ) is a τ_1 -space if and only if every subset consist one point is closed. (8 marks)

QUESTION FOUR (20 MARKS)

- a) State and prove the following : (6 m
 i) Urysohns lemma
 ii) Tietze's extension theorem.
- b) Show that if A is closed subspace of Lindelof space (X, τ) then (A, τ_A) is also lindelof. (6 marks)
- c) Let (X, τ) be a topological space and R be an equivalent relation on X. Suppose X|R has idendification topological τ^* . Prove that the identification map $f: (X, \tau) \to (X|R, \tau^*)$ is continuous. (8 marks)

QUESTION FIVE (20 MARKS)

- a) Show that any two open intervals in \mathbb{R} are homeomorphic. (7 marks)
- b) Show that any 2^{nd} countable space is first countable.
- c) Let (X, τ_X) and (Y, τ_Y) be two topological spaces. Show that $f: X \to Y$ is continuous if and only if $f^{-1}(B) \in \tau$ for all $B \in \mathcal{B}$ where \mathcal{B} is a basis for τ_Y . (7 marks)

(6 marks)

(6 marks)