JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF MASTER OF SCIENCE
 IN PURE MATHEMATICS
 $1^{\text {ST }}$ YEAR $1^{\text {ST }}$ SEMESTER 2023/2024 ACADEMIC YEAR
 MAIN CAMPUS

COURSE CODE: SMA 807
COURSE TITLE: COMPLEX ANALYSIS I
EXAM VENUE:
STREAM: (MSc. PURE MATHEMATICS)
DATE: EXAM SESSION: 2.00-5.00 PM

TIME: 3.00 HOURS
Instructions:

1. Answer ANY 3 questions
2. Candidates are advised to write on the text editor provided, or to write on a foolscap, scan and upload alongside the question.
3. Candidates must ensure that they submit their work by clicking 'FINISH AND SUBMIT ATTEMPT' button at the end.

QUESTION 1 [20MARKS]

(a). Evaluate $\int_{0}^{1+i}\left(x-y-i x^{2}\right) d z$ along the :
(i). Straight line from $z=0$ to $z=1+i$.
(ii). Real axis from $z=0$ to $z=1$ then along the line parallel to imaginary axis from

$$
\begin{equation*}
z=1 \text { to } z=1+i . \tag{5marks}
\end{equation*}
$$

(iii). The imaginary axis from $z=0$ to $z=i$ and then along a line parallel to axis

$$
\begin{equation*}
z=i \text { to } z=1+i \tag{5marks}
\end{equation*}
$$

(b). Prove that $\oint \frac{d z}{z-a}=2 \pi i$.

QUESTION 2 [20MARKS]

(a). State and prove Cauchy's integral theorem.
(10 marks)
(b). Evaluate $\oint_{c} \frac{3 z^{2}+z}{z^{2}-1} d z$, where c is the circle $\quad|z-1|=1$.
(10 marks)

QUESTION 3 [20MARKS]

(a). Determine the poles of the function $f(z)=\frac{z^{2}}{(z-1)^{2}(z+2)}$.
(10 marks)
(b). Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{1-2 a \sin \theta+a^{2}}$.
(10 marks)

QUESTION 4 [20MARKS]

Expand the function $f(z)=\frac{1}{z^{2}-3 z+2}$ in the regions: (i). $|z|<1$ (ii). $1<|z|<2$ (iii). $|z|<2$ (iv). $0<|z-1|<1$ in the Laurent's series.

QUESTION 5 [20MARKS]

(a). Prove that if $f(z)$ is analytic at all points inside and on a simple closed curve C, except at a finite number of isolated singular points within C, then $\oint_{C} f(z) d z=2 \pi i$ [sum of residues at singular points within $C]$.
(b). Evaluate $\oint_{-\infty}^{\infty} \frac{x^{2}}{\left.x^{2}-a^{2}\right)\left(x^{2}+b^{2}\right)} d x,(a>0, b>0)$.
(10 marks)

