
0 | P a g e  

 

 

                 

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY 
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DATE:           EXAM SESSION: 2.00 – 5.00 PM 
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Instructions: 

1. Answer ANY 3 questions  

2. Candidates are advised to write on the text editor provided, or to write on a foolscap, scan 

and upload alongside the question.  

3. Candidates must ensure that they submit their work by clicking ‘FINISH AND SUBMIT 

ATTEMPT’ button at the end. 

 
 

 

 

 
 

 

 

OASIS OF KNOWLEDGE



1 | P a g e  

 

 

QUESTION 1 [20MARKS] 

(a). Evaluate ∫ (𝑥 − 𝑦 − 𝑖𝑥2)dz
1+𝑖

0
 along the : 

 

(i). Straight line from z = 0 to z = 1 + i.                                                                          (5 marks) 

 

(ii). Real axis from z = 0 to z = 1 then along the line parallel to imaginary axis from 

                 z = 1 to z = 1 + i.                                                                                                       (5 marks) 

(iii). The imaginary axis from z = 0 to z = i and then along a line parallel to axis 

 z = i to z = 1 + i.                                                                                                        (5 marks) 

   (b). Prove that ∮
𝑑𝑧

𝑧−𝑎
= 2𝜋𝑖.                                                                                                    (5 marks) 

 

QUESTION 2 [20MARKS] 

(a). State and prove Cauchy’s integral theorem.                                                                       (10 marks) 

(b). Evaluate ∮
3𝑧2+𝑧

𝑧2−1𝑐
 dz, where  c is the circle  1 1z   .                                        (10 marks) 

 

QUESTION 3 [20MARKS] 

(a). Determine the poles of the function  
   

2

2
1 2

z
f z

z z


 
.                                             (10 marks) 

(b). Evaluate∫
𝑑𝜃

1−2𝑎𝑆𝑖𝑛𝜃+𝑎2

2𝜋

0
.                                                                                                   (10 marks) 

 

QUESTION 4 [20MARKS] 

Expand the function 𝑓(𝑧) =
1

𝑧2−3𝑧+2
 in the regions: (i). |z|<1 (ii). 1< |z|<2 (iii). |z|<2 (iv). 0< |z-1|<1 

in the Laurent’s series.  
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QUESTION 5 [20MARKS] 

(a). Prove that if  f z  is analytic at all points inside and on a simple closed curve C, except at a finite 

number of isolated singular points within C, then ∮ 𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖
𝑐

 [sum of residues at singular points 

within C].                                                                                                                                  (10 marks)  

(b). Evaluate ∮
𝑥2

𝑥2−𝑎2)(𝑥2+𝑏2)

∞

−∞(
𝑑𝑥, (𝑎 > 0, 𝑏 > 0).                                                                (10 marks) 

 

 

 

 

 

 

 

 

 


