

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL MATHEMATICS AND ACTURIAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

1st YEAR 2nd SEMESTER 2023/2024 ACADEMIC YEAR

MAIN REGULAR

COURSE CODE: 812

COURSE TITLE: ABSTRACT INTEGRATION II

EXAM VENUE:

STREAM: (Msc. Pure Mathematics)

DATE:

EXAM SESSION: TWO

TIME: 3.00 HOURS

Instructions:

- 1. Answer any THREE questions only.
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE [20 MARKS]

a)	Describe probability measure giving relevant examples.	(5 marks)
b)	State and prove the Vitali's Covering Theorem.	(9 marks)

c) Construct a probability space from the activity of throwing a fair dice once. (6 marks)

QUESTION TWO [20 MARKS]

a)	Describe: Measurable function, Strong convergence and Limit point.	(6 marks)
b)	State and prove Parseval's equality and Minkowski's inequality.	(7 marks)
c)	State and prove Radon-Nikodym Theorem.	(7 marks)

QUESTION THREE [20 MARKS]

(a) Does convergence in L ^p imply convergence in measure? Explain.	(6 marks)
(b) State and prove Banach's contraction principle.	(7 marks)
(c) Prove that strong convergence implies weak convergence in Borel spaces.	(6 marks)

QUESTION FOUR [20 MARKS]

a)	Prove that Products of L ^p -spaces are complete.	(6 marks)
b)	State and prove the Browder-Kirk Theorem for fixed points.	(7 marks)
c)	State and prove Monotone Convergence Theorem.	(7 marks)

QUESTION FIVE [20 MARKS]

a)	By giving relevant application areas, state and prove Tonelli's Theorem.	(7 marks)
b)	State and prove Cantor's intersection Theorem.	(6 marks)
c)	State and prove Wiener Maximal Theorem.	(7 marks)