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OASIS OF KNOWLEDGE



 

 

QUESTION ONE (20 marks) 
a) Let 𝑋 be an inner product space over 𝕂. If 𝑥𝑖, 𝑦𝑗 ∈ 𝑋 and 𝛼𝑖, 𝛽𝑗 ∈ 𝕂 where               

𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚. Show that  

 

〈∑ 𝛼𝑖𝑥𝑖
𝑛
𝑖=1 , ∑ 𝛽𝑗𝑦𝑗

𝑚
𝑗=1  〉 = ∑ ∑ 𝛼𝑖𝛽𝑗̅〈𝑥𝑖 , 𝑦𝑗〉𝑚

𝑗=1
𝑛
𝑖=1  .     (8 marks)  

 

b) Let 𝑋 be a normed linear space over 𝕂, 𝑋∗ its dual and 𝑋∗∗,the dual of 𝑋∗. Consider 

the map 𝐽 on 𝑋 defined by (𝐽𝑥)(𝑓) = 𝑓(𝑥)∀𝑓 ∈ 𝑋∗. Show that 𝐽 and 𝐽𝑥 are both 

bounded and linear.         (7 marks) 

 

c) Let (𝑥𝑛)𝑛∈ℕ be a sequence in a normed linear space 𝑋. Then show that if weak limit 

of  (𝑥𝑛)𝑛∈ℕ   exists then it is unique.        (5 marks) 

 

 

QUESTION TWO (20 marks) 
 

a) Let (𝑋, 〈, 〉) be a normed linear space over 𝕂 and (𝑥𝑛), (𝑦𝑛) be sequences of 𝑋, 

then show that  

i) If 𝑥𝑛 → 𝑥 and 𝑦𝑛 → 𝑦 strongly then 〈𝑥𝑛, 𝑦𝑛〉 → 〈𝑥, 𝑦〉 in (𝕂, 𝑑).      (5 marks) 

ii) If (𝑥𝑛), (𝑦𝑛) are strongly Cauchy, then the sequence (〈𝑥𝑛, 𝑦𝑛〉)𝑛=1
∞  of scalars 

converges in (𝕂, 𝑑).         (5 marks) 

 

 

b) Let 𝑌 be an inner product space. If 𝐸 is a nonvoid subset of 𝑌 and 𝑥 ⊥ 𝐸 then 

show that 𝑥 ⊥ 𝐸̅. Also if 𝐸 is dense in 𝑌, then 𝑥 = 0̅.     (5 marks) 

 

c) Let 𝑌 be an inner product space and {𝑥𝛼: 𝛼 ∈ Λ}be a summable family elements 

of 𝑌 with sum 𝑥.  Let 𝑦 ∈ 𝑌, then show that the family {〈𝑥𝛼, 𝑦〉: 𝛼 ∈ Λ} of scalars 

are summable to 〈𝑥, 𝑦〉.        (5 marks) 

 

 

 

QUESTION THREE (20 marks) 
a) Let 𝐺, 𝐻 and 𝐾 be Hilbert spaces over ℂ and 𝑇 ∈ 𝐵(𝐺, 𝐻) and 𝑆 ∈ 𝐵(𝐻, 𝐾), then 

show that  



i) (𝑆 + 𝑇)∗ = 𝑆∗ + 𝑇∗.       (4 marks) 

ii) (𝑆𝑇)∗ = 𝑇∗𝑆∗.        (4 marks) 

 
 

b) Let 𝑋 be a Banach space, 𝑌 a normed linear space and (𝑇𝑛)𝑛=1
∞ ∈ 𝐵(𝑋, 𝑌) converging 

strongly to 𝑇, then show that 𝑇 ∈ 𝐵(𝑋, 𝑌).     (6 marks) 

 

c) Let 𝑋, 𝑌 a normed linear space, 𝐷 ⊆ 𝑋 and 𝑇: 𝐷 → 𝑌 be a linear transformation 

bounded from below. Then show that 𝑇−1: 𝑅𝑇 → 𝐷 is bounded.      (6 marks)  

 

 

 

QUESTION FOUR (20 marks) 
a) State and prove the polarization identity.    (10 marks) 

         

b) Let 𝑋 be a Banach space, 𝑌 a normed linear space, 𝐷 ⊆ 𝑋 and 𝑇: 𝐷 ⟶ 𝑌 

bounded from below be a closed linear transformation then, show that 𝑅𝑇 is a 

closed linear subspace of 𝑌.       (10 marks) 

 

 

 

QUESTION FIVE (20 marks) 
a) State and prove Cauchy-Bunyakowskii-Schwarz inequality.  (8 marks) 

 

b) Let 𝑌 be an inner product space, 𝑁 a linear subspace of 𝑌 and 𝑀 a closed linear 

subspace of 𝑌 such that 𝑁 ⊃ 𝑀 properly. Show that there exists a non-zero vector 

𝑧 ∈ 𝑁 such that 𝑧 ⊥ 𝑀.       (4 marks) 

 

c) Let 𝑌 be an inner product space and 𝑀 ⊆ 𝑌. Then show that 𝑀⊥ is a closed linear 

subspace of 𝑌 and 𝑀 ∩ 𝑀⊥ ⊆ {0̅}.       (8 marks) 

                    

 
 

 


