JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES
 UNIVERSITY EXAMINATION FOR MASTERS OF BACHELOR OF ACTUARIAL SCIENCE $1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER, 2023/2024 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: SMA 814
COURSE TITLE: FUNCTIONAL ANALYSIS II
EXAM VENUE:
STREAM: (PURE MATHEMATICS)
DATE:
EXAM SESSION:
TIME: 3.00 HOURS

Instructions:

1. Chose ANY THREE questions.
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (20 marks)

a) Let X be an inner product space over \mathbb{K}. If $x_{i}, y_{j} \in X$ and $\alpha_{i}, \beta_{j} \in \mathbb{K}$ where $i=1, \ldots, n$ and $j=1, \ldots, m$. Show that

$$
\begin{equation*}
\left\langle\sum_{i=1}^{n} \alpha_{i} x_{i}, \sum_{j=1}^{m} \beta_{j} y_{j}\right\rangle=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \bar{\beta}_{\jmath}\left\langle x_{i}, y_{j}\right\rangle . \tag{8marks}
\end{equation*}
$$

b) Let X be a normed linear space over \mathbb{K}, X^{*} its dual and $X^{* *}$, the dual of X^{*}. Consider the map J on X defined by $(J x)(f)=f(x) \forall f \in X^{*}$. Show that J and $J x$ are both bounded and linear.
c) Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in a normed linear space X. Then show that if weak limit of $\left(x_{n}\right)_{n \in \mathbb{N}}$ exists then it is unique.

QUESTION TWO (20 marks)

a) Let $(X,\langle\rangle$,$) be a normed linear space over \mathbb{K}$ and $\left(x_{n}\right),\left(y_{n}\right)$ be sequences of X, then show that
i) If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ strongly then $\left\langle x_{n}, y_{n}\right\rangle \rightarrow\langle x, y\rangle$ in (\mathbb{K}, d). (5 marks)
ii) If $\left(x_{n}\right),\left(y_{n}\right)$ are strongly Cauchy, then the sequence $\left(\left\langle x_{n}, y_{n}\right\rangle\right)_{n=1}^{\infty}$ of scalars converges in (\mathbb{K}, d).
b) Let Y be an inner product space. If E is a nonvoid subset of Y and $x \perp E$ then show that $x \perp \bar{E}$. Also if E is dense in Y, then $x=\overline{0}$.
c) Let Y be an inner product space and $\left\{x_{\alpha}: \alpha \in \Lambda\right\}$ be a summable family elements of Y with sum x. Let $y \in Y$, then show that the family $\left\{\left\langle x_{\alpha}, y\right\rangle: \alpha \in \Lambda\right\}$ of scalars are summable to $\langle x, y\rangle$.
(5 marks)

QUESTION THREE (20 marks)

a) Let G, H and K be Hilbert spaces over \mathbb{C} and $T \in B(G, H)$ and $S \in B(H, K)$, then show that
i) $\quad(S+T)^{*}=S^{*}+T^{*}$.
ii) $\quad(S T)^{*}=T^{*} S^{*}$.
b) Let X be a Banach space, Y a normed linear space and $\left(T_{n}\right)_{n=1}^{\infty} \in B(X, Y)$ converging strongly to T, then show that $T \in B(X, Y)$.
c) Let X, Y a normed linear space, $D \subseteq X$ and $T: D \rightarrow Y$ be a linear transformation bounded from below. Then show that $T^{-1}: R_{T} \rightarrow D$ is bounded.

QUESTION FOUR (20 marks)

a) State and prove the polarization identity.
(10 marks)
b) Let X be a Banach space, Y a normed linear space, $D \subseteq X$ and $T: D \rightarrow Y$ bounded from below be a closed linear transformation then, show that R_{T} is a closed linear subspace of Y.

QUESTION FIVE (20 marks)

a) State and prove Cauchy-Bunyakowskii-Schwarz inequality. (8 marks)
b) Let Y be an inner product space, N a linear subspace of Y and M a closed linear subspace of Y such that $N \supset M$ properly. Show that there exists a non-zero vector $z \in N$ such that $z \perp M$.
(4 marks)
c) Let Y be an inner product space and $M \subseteq Y$. Then show that M^{\perp} is a closed linear subspace of Y and $M \cap M^{\perp} \subseteq\{\overline{0}\}$.

