

JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTURIAL SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF 2ND YEAR 2ND SEMESTER 2023/2024 ACADEMIC YEAR MAIN REGULAR

COURSE CODE: WMB 9205

COURSE TITLE: VECTOR ANALYSIS

EXAM VENUE: STREAM:

DATE: EXAM SESSION:

TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions

- 2. Candidates are advised not to write on the question paper.
- 3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE (30 marks)

- a) Show geometrically that addition of vectors is associative i.e. P + (Q + R) = (P + Q) + R (5 marks)
- b) Find the unit vector \hat{a} in the direction of the vector $\vec{A} = 2\vec{B} + 3\vec{C}$ if $\vec{B} = 2\hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{C} = \hat{i} + 4\hat{j} + \hat{k}$ (5 marks)
- c) Find the angle θ between the vectors $\vec{U} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ and $\vec{V} = 2\hat{i} \hat{j} + 2\hat{k}$ (5 marks)
- d) Prove that the area of a parallelogram with sides \vec{A} and \vec{B} is $|\vec{A} \times \vec{B}|$ (5 marks)
- e) If $\vec{A} = xz^3\hat{i} + 2x^2yz\hat{j} + 2yz^4\hat{k}$, find Curl \vec{A} at (1,-1,1) (5 marks)
- f) If $\vec{A} = 2yz\hat{i} x^2y\hat{j} + xz^2\hat{k}$ and $\phi = 2x^2yz^3$, find $(\vec{A} \cdot \nabla)\varphi$ (5 marks)

QUESTION TWO (20 marks)

a) Given that $\vec{A}=A_1\hat{i}+A_2\hat{j}+A_3\hat{k}$ and $\vec{B}=B_1\hat{i}+B_2\hat{j}+B_3\hat{k}$.

Show that $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}$ (6 marks)

- b) Find the projection of the vector $\vec{A} = 4\hat{i} 4\hat{j} + 7\hat{k}$ on the vector $\vec{B} = \hat{i} 2\hat{j} + \hat{k}$ (4 marks)
- c) Prove that $\nabla \times (\nabla \times \vec{A}) = -\nabla^2 \vec{A} + \nabla (\nabla \cdot \vec{A})$ where $\vec{A} = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$ (10 marks)

QUESTION THREE (20 marks)

- a) Find grad ϕ at the point (1,-2,1) if $\phi(x, y.z) = 3x^2y y^3z^2$
- b) Given $\phi(x, y.z) = x^2 yz^3$ and $\vec{A} = xz\hat{i} xy^2\hat{j} + yz^2\hat{k}$, find $\frac{\partial^2(\varphi \vec{A})}{\partial x \partial z}$ at the point (1,-1,1) (5 marks)
- c) Evaluate $(2\hat{i} 3\hat{j}) \cdot [(\hat{i} + \hat{j} \hat{k}) \times (3\hat{i} \hat{k})]$ (4 marks)
- a) If $\vec{A} = 10x^3yz\vec{i} 6xz^3\vec{j} + 4xz^2\vec{k}$ and $\vec{B} = 8z\vec{i} + 3y\vec{j} 7x^2\vec{k}$, Find $\frac{\partial^2}{\partial x \partial y}(\vec{A} \times \vec{B})$ at (3,5,2)(6 marks)

QUESTION FOUR (20 marks)

- a) Find a unit vector perpendicular to the plane of $\vec{i} 2\vec{j} + 3\vec{k}$ and $3\vec{i} + \vec{j} + 2\vec{k}$, (6 marks)
- b) If $\vec{F} = (2y+3)\hat{i} + xz\hat{j} + (yz-x)\hat{k}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ along the following paths c:
 - (i) $x = 2t^2$, y = t, $z = t^3$ from t 0 to t = 2 (4 marks)
 - (ii) the straight lines from (0,0,0) to (0,0,1), then to (0,1,1) and then to (2,1,1) (6 marks)
 - (iii) the straight line joining (0,0,0) and (2,1,1) (4 marks)

QUESTION FIVE (20 marks)

- a) Evaluate $\iint_{S} \vec{A} \cdot \hat{n} ds$, where $\vec{A} = 18z\hat{i} 12\hat{j} + 3y\hat{k}$ and *S* is that part of the plane 2x + 3y + 6z = 12 which is located in the first octant. (10 marks)
- b) Verify stokes' theorem for $\vec{A} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$, where *S* is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and *C* is its boundary. (10 marks)