JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF SCIENCE
ACTUARIAL SCIENCES/ BED (SCI OR ARTS)
$4^{\text {th }}$ YEAR $2^{\text {nd }}$ SEMESTER 2023/2024 ACADEMIC YEAR
REGULAR MAIN

COURSE CODE: WMB 9404
COURSE TITLE: FOURIER ANALYSIS

EXAM VENUE:
STREAM: (BSc. Actuarial Sci /BED (SCI OR
ARTS)
DATE:
EXAM SESSION: TIME: 2.00 HOURS

## Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

## QUESTION ONE [COMPULSORY] (30 MARKS)

a) Find the limit $\lim _{x \rightarrow 0} x\left\{\frac{-x^{18}+\frac{1}{2} x^{16}-\frac{1}{2} x^{241}+\frac{1}{12} x^{81}}{x^{6}}\right\}$
b) Determine explicitly if the following functions are odd, even or not ;
i) $f(x)=\cos 2 x$ is on

$$
\begin{equation*}
-4 \pi \leq x \leq 4 \pi \tag{5Marks}
\end{equation*}
$$

ii) $f(x)=\sin x \quad$ on
$-\pi \leq x \leq 4 \pi$
[5 Marks]
iii) $\quad f(x)=x \sin x$ on
$-\pi \leq x \leq 4 \pi$
[2 Marks]
iv) $f(x)=x \tan x \quad$ on
$-\pi \leq x \leq \pi$
c) Compute the Maclaurin series as far as $x^{6}$ term for the following functions
i) $\quad x^{2}[\sin (x)]$
ii) $\frac{\cos \left(x^{2}\right)}{x^{2}}$
iii) $\quad e^{-x}$
[3Marks]

## QUESTION TWO 2 MARKS)

a)Suppose function $f(x)$ is expressible in the Fourier series form $f(x)=\frac{a_{0}}{2}+\sum\left[a_{n} \cos n x+b_{n} \sin n x\right],[-\pi, \pi]$.Describe fully what you understand by
i) period of $f$
ii) $f$ is periodic
iii)periodic extension of $f$
[3 Marks]
iv) Fourier coefficients of expansion of $f$
b) Sketch of graph of four periodic extensions of $f$ defined by $f(x)=2 x^{2}$ on the interval $[-10,10]$ [4 Marks]
c) Obtain the full solution of the ordinary differential differential equation

$$
y^{\prime \prime}-121 y=\left\{\begin{array}{cc}
x & ; 0<x<5  \tag{7Marks}\\
-x & ; 5 \leq x<10
\end{array},\right.
$$

QUESTION THREE (20MARKS)
Determine Solution of the heat equation satisfying $u_{t}=4 u_{x x}$, the condition $0<x<1, t>0$ with the Dirichlet boundary conditions $u(t, 0)=u(t, 1)=0, t>0$ and initial conditions $u(0, x)=g(x)=2 x^{2}, 0 \leq x \leq 1$
[20 Marks]

## QUESTION FOUR (20MARKS)

Given real valued function $y=f(x)$ for which $f(x)=\cos x$

$$
0<x<2 \pi
$$

$f(x)=f(x+2 \pi)$
a)State period of $f(x)$
[2 marks]
b) Sketch the graph of $f(x)=\sin x$ over the interval $-6 \pi<x<6 \pi$
c) Find Fourier coefficients for function $f(x)=\operatorname{sos} x$ and state $f(x)=\cos x$ in its Fourier series up to the first ten harmonics Deduce that the series is convergent
d) Find the Fourier half-range sine for $f(x)=\left\{\begin{array}{c}x \\ \pi+x\end{array}\right.$

## QUESTION FIVE (20MARKS)

a) Given the Fourier series for function $f(x)=\left\{\begin{array}{l}x ;-\pi<x<0 \\ -x ; 0 \leq x<\pi\end{array}\right.$ takes the expantion form, $f(x)=\frac{a_{0}}{2}+\sum\left[a_{n} \cos n x+b_{n} \sin n x\right],[-\pi, \pi]$
prove that;
i) $\frac{a_{0}}{2}=\frac{\pi}{2}$
[2 marks]
ii) $a_{n}=\frac{(-1)^{n}-1}{n^{2} \pi}=(-1)^{n}$
[4 marks]
iii) $b_{n}=\frac{(-1)^{n}-1}{n^{2} \pi}=\frac{(-1)^{n+1}}{n}$
[4marks]
c) i) Show that the functions $\sin m x, \cos m x, e^{i m x}, e^{-i m x}, m=0,1,2,3 \ldots$ are orthogonal functions on $[-\pi, \pi]$.
ii) Show that the functions $\sin m x, \cos m x, e^{i m x}, e^{-i m x}$, satisfy the Sturm-Lioville equation $-w^{\prime \prime}(x)=\lambda w(x), w(-\pi)=w(\pi)$ and $w^{\prime}(-\pi)=w^{\prime}(\pi)$.
[5 marks]

