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QUESTION ONE [COMPULSORY] (30 MARKS) 

 a) Find the limit 
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           [6 Marks] 

b)  Determine  explicitly if  the following functions are odd,  even  or not ; 

i)   cos2f x x   is   on    4 4x         [5 Marks] 

ii)   sinf x x         on              4x         [5 Marks] 

iii)   sinf x x x     on  4x         [2 Marks] 

  iv)     tanf x x x           on                   x        [2 Marks] 

c) Compute  the Maclaurin series as far as 6x term  for the following functions 

      i)       2 sinx x      [4 Marks] 

   ii)   
 2

2

cos x

x
   [3 Marks] 

  iii)       
xe
   [3Marks] 

 QUESTION TWO  2 MARKS) 

  a)Suppose     function ( )f x is expressible    in the Fourier series  form                   

 0( ) cos sin
2

n n

a
f x a nx b nx   , ,  .Describe fully what you understand by 

       i) period of   f           [2 Marks] 

         ii) f is periodic           [2 Marks] 

      iii)periodic extension of f         [3 Marks] 

     iv) Fourier coefficients of expansion of  f       [2 Marks] 

b) Sketch of graph of four periodic extensions of f  defined by 2( ) 2f x x  on the     interval 

 10, 10            [4 Marks] 
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c) Obtain the full solution of the ordinary differential  differential  equation    

  ;0 5

;5 10121 x x

x xy y  

  
   ,       [7 Marks] 

QUESTION THREE ( 20MARKS) 

Determine  Solution of the  heat equation satisfying 4t xxu u , the condition  0 1,x   0t   

with the Dirichlet boundary conditions  ( ,0) ( ,1) 0u t u t  ,  0t   and initial conditions  

2(0, ) ( ) 2u x g x x  , 0 1x              [20 Marks] 

QUESTION FOUR  ( 20MARKS) 

 Given real valued function   y f x for which   cos 0 2f x x x     

   2f x f x    

a)State period of  f x          [2 marks] 

b)Sketch the graph  of   sinf x x over the interval 6 6x               [8 marks] 

 c)   Find Fourier   coefficients for function   scosf x x and state     cosf x x  in its Fourier 

series up to the first ten harmonics Deduce that the series  is convergent   [5  marks] 

d) Find the Fourier half-range sine for 𝑓(𝑥) = {
𝑥

𝜋 + 𝑥
    [5 marks] 

QUESTION FIVE ( 20MARKS) 

a) Given the Fourier series for  function 𝑓(𝑥) = {
𝑥; −𝜋 < 𝑥 < 0
−𝑥; 0 ≤ 𝑥 < 𝜋

    

 takes the expantion form ,  0( ) cos sin
2

n n

a
f x a nx b nx   , ,   

         prove that; 
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c) i) Show that the functions sin 𝑚𝑥, cos 𝑚𝑥,   𝑒𝑖𝑚𝑥, 𝑒−𝑖𝑚𝑥 , 𝑚 = 0, 1, 2, 3 …  are orthogonal 

functions on [−𝜋, 𝜋]. [5 marks] 

ii) Show that the functions sin 𝑚𝑥, cos 𝑚𝑥,   𝑒𝑖𝑚𝑥, 𝑒−𝑖𝑚𝑥 ,  satisfy the Sturm-Lioville equation 

−𝑤′′(𝑥) = 𝜆𝑤(𝑥), 𝑤(−𝜋) = 𝑤(𝜋)𝑎𝑛𝑑 𝑤′(−𝜋) = 𝑤′(𝜋).  [5 marks] 


