

# JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY

# SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE, ARTS AND SPECIAL NEEDS 2<sup>ND</sup> YEAR 2<sup>ND</sup> SEMESTER 2024/2025 ACADEMIC YEAR REGULAR (MAIN)

#### COURSE CODE: WAB 9210

**COURSE TITLE:** Probability Distribution Theory Ii

**EXAM VENUE:** 

**STREAM: (EDUCATION)** 

DATE:

EXAM SESSION:

TIME: 2.00 HOURS

#### **Instructions:**

b)

- 1. Answer question 1 (Compulsory) and ANY other 2 questions
- 2. Candidates are advised not to write on the question paper.
- **3.** Candidates must hand in their answer booklets to the invigilator while in the examination room.

#### **QUESTION ONE [30 MARKS]**

a) A random variable T has a t-distribution with 14 degrees of freedom, i.e  $T \sim t(14)$ . Find the value of t for which

| i.    | P(T < t) = 0.90                                                  | [2 marks] |
|-------|------------------------------------------------------------------|-----------|
| ii.   | P( T  < t) = 0.98                                                | [2 marks] |
| iii.  | Find $P( T  < 1.076$                                             | [2 marks] |
| You a | re provided with the sample data: 15,20, 18, 16, 17, 22, 29, 35, | , 10, 19  |
| Find: |                                                                  |           |

| i.  | The sample mean                   | [1 mark]    |
|-----|-----------------------------------|-------------|
| ii. | The unbiased estimate of variance | [ 3 marks ] |

- c) Let  $X_1, X_2, X_3, ..., X_n$  be iid random variables from a population with mean  $\mu$  and variance  $\sigma^2$ . Let  $Y = \sum_{i=1}^n X_i$ . Obtain the sampling distribution of Y. [6 marks]
- d) Ball bearings are put in a container. 85% of them are light gauge while the rest are heavy gauge. Of the heavy gauge ball bearings 10% are defective. One picks randomly from this container a total of 150 ball bearings. Determine the approximate probabilities that of the bearings picked
  - i. At least 18 are heavy gauge

- [ 5 marks]
- ii. Exactly 3 are heavy gauge and defective. [3 marks]
- e) The heights of recruits for a military job are normally distributed with mean 250cm and variance 144 cm<sup>2</sup>. A number of recruits n are sampled and it is found that  $P(\bar{X} > 252) = 0.0778$ . Find n the number of recruits who were sampled. [6 marks]

## **QUESTION TWO [20 MARKS]**

- a) A dummy population consists of five numbers 5, 7, 6, 8 and 9. Consider all the possible samples of size 2 which can be drawn without replacement. Find
  - i.  $\mu_x$ : the population mean [2 marks]
  - ii.  $\sigma_x$ : the population standard error [3 marks]
  - iii.  $\mu_{\bar{x}}$ : the mean of sampling distribution of means [5 marks]
  - iv.  $\sigma_{\bar{x}}$ : the standard error of the sampling distribution of means [3 marks]
- b) Observations from two random variables X and Y were summarized as follows;

$$\sum x = 125$$
,  $\sum y = 100$ ,  $\sum x^2 = 650$ ,  $\sum y^2 = 436$ ,  $\sum xy = 520$ ,  $n = 25$ 

One suspects that X and Y have a positive association. Obtain the Product Moment Correlation Coefficient hence test the Hypothesis

$$H_o: \rho = 0$$
 against  $H_1: \rho > 0$  at 5% level of significance [7 marks]

## **QUESTION THREE [20 MARKS]**

a) Over a period of 50 weeks the numbers of road accidents reported to a police station were recorded as follows

| No of accidents | 0  | 1  | 2  | 3 |
|-----------------|----|----|----|---|
| No of weeks     | 23 | 13 | 10 | 4 |

Stating clearly any assumption that must be made, test at 5% level whether a Poisson model will fit this data. [10 marks]

b) Let  $X \sim Bin(n, p)$ . Further let  $X \sim Poisson(\lambda)$ . Show that if  $\lambda = np$  then  $P(X = x) = \binom{n}{x}p^x(1-p)^{n-x}$ , n = 0,1,2,...,n is asymptotically Poisson distributed. [10 marks]

# **QUESTION FOUR [20 MARKS]**

- a) An arbitrary population consists of six members: 6, 9, 11, 12, 14, 8. Assuming that sampling is from a finite population,
  - i. List all the possible samples of size two

ii. Obtain for the samples drawn the mean  $\mu_{\hat{s}^2}$  and variance  $\sigma^2_{\hat{s}^2}$  of the sampling distribution of variance. [10 marks]

| Sample | 12 | 19 | 16 | 17 | 14 | 20 | 16 | 17 | 19 | 13 |
|--------|----|----|----|----|----|----|----|----|----|----|
| А      |    |    |    |    |    |    |    |    |    |    |
| Sample | 15 | 20 | 16 | 18 | 14 | 21 | 22 | 16 |    |    |
| В      |    |    |    |    |    |    |    |    |    |    |

b) Observations were recorded from two samples A and B.

One claims that generally the population from which observations in sample A were taken has a smaller mean than the population from which observations in sample B came from. By clearly stating the Null and alternative hypothesis and assuming that the samples came from normal populations, Use the t -Test at 5% level of significance whether or not the claim is valid. [10 marks]

#### **QUESTION FIVE [20 MARKS]**

a) The following data represent the time (in days) taken to process and disburse pension lump sum to retirees by two different pension fund administrators.

Octagon: 21, 14, 15, 10, 19, 8, 9, 8, 6, 15

Jubilee: 16, 15, 13, 24, 19, 10, 11, 9, 19, 13, 18

One suggests that the data appears to have the same variance with regard to pension disbursement time schedules. Use the F-Test to check this claim at  $\propto = 0.05$  level of significance. [10 marks]

b) The following data on 150 chicken divided into two groups according to breed and into three groups according to yield of eggs. There is a claim that the yield is not affected by the breed, Test this claim at 5% based on the contingency table provided.

|         | High<br>Yield | Medium<br>Yield | Low<br>Yield |
|---------|---------------|-----------------|--------------|
| Breed A | 46            | 29              | 28           |
| Breed B | 27            | 14              | 6            |

[10 marks]