JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF BIOLOGICAL, PHYSICAL, MATHEMATICS AND ACTUARIAL SCIENCES
UNIVERSITY EXAMINATION FOR DEGREE OF BACHELOR OF EDUCATION SCIENCE, ARTS AND SPECIAL NEEDS $2^{\text {ND }}$ YEAR $2^{\text {ND }}$ SEMESTER 2024/2025 ACADEMIC YEAR REGULAR (MAIN)

COURSE CODE: WAB 9210
COURSE TITLE: Probability Distribution Theory Ii
EXAM VENUE: STREAM: (EDUCATION)

DATE: EXAM SESSION:
TIME: 2.00 HOURS

Instructions:

1. Answer question 1 (Compulsory) and ANY other 2 questions
2. Candidates are advised not to write on the question paper.
3. Candidates must hand in their answer booklets to the invigilator while in the examination room.

QUESTION ONE [30 MARKS]
a) A random variable T has a t -distribution with 14 degrees of freedom, i.e $T \sim t(14)$.

Find the value of t for which

```
i. \(\quad P(T<t)=0.90\)
ii. \(\quad P(|T|<t)=0.98\)
iii. Find \(P(|T|<1.076\)
b) You are provided with the sample data: \(15,20,18,16,17,22,29,35,10,19\) Find:
i. The sample mean [ 1 mark ]
ii. The unbiased estimate of variance [3 marks ]
c) Let \(X_{1}, X_{2}, X_{3}, \ldots, X_{n}\) be iid random variables from a population with mean \(\mu\) and variance \(\sigma^{2}\). Let \(Y=\sum_{i=1}^{n} X_{i}\). Obtain the sampling distribution of Y. [6 marks]
d) Ball bearings are put in a container. \(85 \%\) of them are light gauge while the rest are heavy gauge. Of the heavy gauge ball bearings \(10 \%\) are defective. One picks randomly from this container a total of 150 ball bearings. Determine the approximate probabilities that of the bearings picked
i. At least 18 are heavy gauge [5 marks]
ii. Exactly 3 are heavy gauge and defective. [ 3 marks]
e) The heights of recruits for a military job are normally distributed with mean 250 cm and variance \(144 \mathrm{~cm}^{2}\). A number of recruits n are sampled and it is found that \(P(\bar{X}>252)=0.0778\). Find n the number of recruits who were sampled. [ 6 marks]

\section*{QUESTION TWO [20 MARKS]}
a) A dummy population consists of five numbers 5, 7, 6, 8 and 9 . Consider all the possible samples of size 2 which can be drawn without replacement. Find
i. \(\quad \mu_{x}\) : the population mean
ii. \(\sigma_{x}:\) the population standard error [3 marks]
iii. \(\mu_{\bar{x}}\) : the mean of sampling distribution of means [5 marks]
iv. \(\sigma_{\bar{x}}\) : the standard error of the sampling distribution of means [ 3 marks]
b) Observations from two random variables X and Y were summarized as follows;
\[
\sum x=125, \sum y=100, \sum x^{2}=650, \sum y^{2}=436, \sum x y=520, n=25
\]

One suspects that X and Y have a positive association. Obtain the Product Moment Correlation Coefficient hence test the Hypothesis
\(H_{o}: \rho=0\) against \(H_{1}: \rho>0\) at \(5 \%\) level of significance [7 marks]

\section*{QUESTION THREE [20 MARKS]}
a) Over a period of 50 weeks the numbers of road accidents reported to a police station were recorded as follows
\begin{tabular}{|l|l|l|l|l|}
\hline No of accidents & 0 & 1 & 2 & 3 \\
\hline No of weeks & 23 & 13 & 10 & 4 \\
\hline
\end{tabular}

Stating clearly any assumption that must be made, test at \(5 \%\) level whether a Poisson model will fit this data.
[10 marks]
b) Let \(X \sim \operatorname{Bin}(n, p)\). Further let \(X \sim \operatorname{Poisson}(\lambda)\). Show that if \(\lambda=n p\) then \(P(X=x)=\) \(\binom{n}{x} p^{x}(1-p)^{n-x}, n=0,1,2, \ldots, n\) is asymptotically Poisson distributed. [10 marks]

\section*{QUESTION FOUR [20 MARKS]}
a) An arbitrary population consists of six members: \(6,9,11,12,14,8\). Assuming that sampling is from a finite population,
i. List all the possible samples of size two
ii. Obtain for the samples drawn the mean \(\mu_{\hat{S}^{2}}\) and variance \(\sigma^{2}{ }_{\hat{S}^{2}}\) of the sampling distribution of variance.
[ 10 marks]
b) Observations were recorded from two samples A and B.
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Sample \\
A
\end{tabular} & 12 & 19 & 16 & 17 & 14 & 20 & 16 & 17 & 19 & 13 \\
\hline \begin{tabular}{l} 
Sample \\
B
\end{tabular} & 15 & 20 & 16 & 18 & 14 & 21 & 22 & 16 & & \\
\hline
\end{tabular}

One claims that generally the population from which observations in sample A were taken has a smaller mean than the population from which observations in sample B came from. By clearly stating the Null and alternative hypothesis and assuming that the samples came from normal populations, Use the \(t\)-Test at \(5 \%\) level of significance whether or not the claim is valid.
[10 marks]

\section*{QUESTION FIVE [20 MARKS]}
a) The following data represent the time (in days) taken to process and disburse pension lump sum to retirees by two different pension fund administrators.

Octagon: 21, 14, 15, 10, 19, 8, 9, 8, 6, 15
Jubilee: \(16,15,13,24,19,10,11,9,19,13,18\)
One suggests that the data appears to have the same variance with regard to pension disbursement time schedules. Use the F-Test to check this claim at \(\alpha=0.05\) level of significance.
b) The following data on 150 chicken divided into two groups according to breed and into three groups according to yield of eggs. There is a claim that the yield is not affected by the breed, Test this claim at 5\% based on the contingency table provided.
\begin{tabular}{|l|l|l|l|}
\hline & \begin{tabular}{l} 
High \\
Yield
\end{tabular} & \begin{tabular}{l} 
Medium \\
Yield
\end{tabular} & \begin{tabular}{l} 
Low \\
Yield
\end{tabular} \\
\hline Breed A & 46 & 29 & 28 \\
\hline Breed B & 27 & 14 & 6 \\
\hline
\end{tabular}```

