JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

UNIVERSITY EXAMINATIONS FOR THE DIPLOMA IN CONSTRUCTION MANAGEMENT (TVET) $1^{\text {ST }}$ YEAR $2^{\text {ND }}$ SEMESTER 2023/2024 ACADEMIC YEAR

CENTRE: MAIN CAMPUS

COURSE CODE: TDC 2121

COURSE TITLE: TECHNICAL DRAWING I
EXAM VENUE: STREAM: Dip CONSTRUCTION MGT
DATE: ../04/2024 EXAM SESSION:

DURATION: 2 HOURS

Instructions

1. Answer ALL questions in Section A (Compulsory) and ANY other three questions in Section B
2. Candidates are advised not to write on question paper
3. Candidates must hand in their answer booklets to the invigilator while in the examination room
4. Indicate your course particulars IN a well prepared title block (scale to be used is 1: 1)

Section A (Compulsory) (40 Marks)

1. State five types of lines used in technical drawing
2. Given that A3 SIZE of drawing paper is $210 \mathrm{~mm} \times 290 \mathrm{~mm}$, sketch on the same plane, the following paper sizes showing their respective sizes
i. $\quad \mathrm{A} 4$
ii. A5
iii. A6
iv. A2
v. A1
3. Divide a line AB 55 mm into 8 equal parts
4. Construct a right angle triangle whose perimeter is 75 mm
5. Construct each of the following angles
i. $\quad 30^{\circ}$
ii. $\quad 135^{0}$
iii. $\quad 15^{0}$
iv. $\quad 22.5^{0}$

Section B (Answer any three questions from this section) (60 Marks)

6. Construct a plain scale of $30 \mathrm{~mm}=300 \mathrm{~mm}$ to read to 10 mm up to 1200 mm . Using this scale, draw to scale a triangle having a perimeter of 1200 mm and having sides in the ratio 3:4:6. Print neatly along each side the length to the nearest $10 \mathrm{~mm} \quad$ (20 Marks)
7. Draw a line AB 40 mm long. On the line, construct 45° at A and 60° at B . use line AB and the angles constructed to draw the following angles (20 Marks)
i. pentagon
ii. heptagon
iii. nonagon
iv. hexagon
8. Refer to the block shown below: redraw the block in isometric projection TAKING corner A as the lowest point. all dimensions in mm

9. Draw in $3^{\text {rd }}$ angle orthographic projection the views of the block in question 8 above taking B as the front elevation
